biologia plantarum

International journal on Plant Life established by Bohumil Nìmec in 1959

Biologia plantarum 61:717-725, 2017 | DOI: 10.1007/s10535-017-0733-8

The cytotoxic targets of anatase or rutile + anatase nanoparticles depend on the plant species

S. Silva1,2,*, H. Oliveira2,3, A. M. S. Silva1, C. Santos4
1 Department of Chemistry, QOPNA, University of Aveiro, Aveiro, Portugal
2 CESAM, University of Aveiro, Aveiro, Portugal
3 Department of Biology, University of Aveiro, Aveiro, Portugal
4 Department of Biology, Faculty of Sciences, University of Porto, Porto, Portugal

The potential toxicity of nanoparticles (NPs) is under debate. Information about TiO2 NPs phytotoxicity is still limited partly due to the different TiO2 NP forms that may be found in the environment. The present work investigated the impact of different TiO2 NPs forms (rutile and anatase) on germination, growth, cell cycle profile, ploidy level, and micronucleus formation in Lactuca sativa (lettuce) and Ocimum basilicum (basil). Seeds were exposed to anatase (ana) or rutile + anatase (rut+ana) at concentrations 5 - 150 mg dm-3 for 5 d and after that different parameters were analyzed. Rut+ana showed high potential to impair germination and growth. On the other hand, ana alone showed a positive influence on seedling growth. Despite that, ana induced severe alterations in cell cycle dynamics. Regarding species, basil was more sensitive to TiO2 NPs cytostatic effects (delay/arrest in G0/G1 phase), whereas in lettuce, TiO2 NPs were more genotoxic (micronucleus formation increase). Finally, we propose that, besides germination and plant growth, cell cycle dynamics and micronucleus formation can be sensitive biomarkers of these NPs.

Keywords: abiotic stress; cell cycle; genotoxicity; micronucleus; phytotoxicity; titanium dioxide
Subjects: nanoparticles; atanase; rutile; cell cycle; genotoxicity; germination; growth; lettuce; sweet basil

Received: August 23, 2016; Revised: January 26, 2017; Accepted: January 27, 2017; Published: December 1, 2017  Show citation

ACS AIP APA ASA Harvard Chicago IEEE ISO690 MLA NLM Turabian Vancouver
Silva, S., Oliveira, H., Silva, A.M.S., & Santos, C. (2017). The cytotoxic targets of anatase or rutile + anatase nanoparticles depend on the plant species. Biologia plantarum61(4), 717-725. doi: 10.1007/s10535-017-0733-8
Download citation

Supplementary files

Download filebpl-201704-0014_S1.pdf

File size: 194.43 kB

References

  1. Anjum, N., Adam, V., Kizek, R., Duarte, A., Pereira, E., Iqbal, M., Lukatkin, A., Ahmad, I.: Nanoscale copper in the soilplant system - toxicity and underlying potential mechanisms. - Environ. Res. 138: 306-325, 2015. Go to original source...
  2. Ardakani, A.: Toxicity of silver, titanium and silicon nanoparticles on the root-knot nematode, Meloidogyne incognita, and growth parameters of tomato. - Nematology 15: 671-677, 2013. Go to original source...
  3. Bandyopadhyay, S., Plascencia-Villa, G., Mukherjee, A., Rico, C.M., Jose-Yacamán, M., Peralta-Videa, J., Gardea-Torresdey, J.: Comparative phytotoxicity of ZnO NPs, bulk ZnO, and ionic zinc onto the alfalfa plants symbiotically associated with Sinorhizobium meliloti in soil. - Sci. total Environ. 515: 60-69, 2015. Go to original source...
  4. Barrena, R., Casals, E., Colon, J., Font, X., Sanchez, A., Puntes, V.: Evaluation of the ecotoxicity of model nanoparticles. - Chemosphere 75: 850-857, 2009. Go to original source...
  5. Begum, P., Ikhtiari, R., Fugetsu, B.: Potential impact of multiwalled carbon nanotubes exposure to the seedling stage of selected plant species. - Nanomaterials 4: 203-221, 2009. Go to original source...
  6. Bourikas, K., Kordulis, C., Lycourghiotis, A.: Titanium dioxide (anatase and rutile): surface chemistry, liquid-solid interface chemistry, and scientific synthesis of supported catalysts. - Chem. Rev. 114: 9754-9823, 2014. Go to original source...
  7. Castiglione, M.R., Giorgetti, L., Geri, C., Cremonini, R.: The effects of nano-TiO2 on seed germination, development and mitosis of root tip cells of Vicia narbonensis L. and Zea mays L. - J. Nanoparicle. Res. 13: 2443-2449, 2011. Go to original source...
  8. Chen, J., Liu, X., Wang, C., Yin, S., Li, X., Hu, W., Simon, M., Shen, Z., Xiao, Q., Chu, C., Peng, X., Zheng, H.: Nitric oxide ameliorates zinc oxide nanoparticles-induced phytotoxicity in rice seedlings. - J. Hazard. Mater. 297: 173-182, 2015. Go to original source...
  9. Clement, L., Hurel, C., Marmier, N.: Toxicity of TiO2 nanoparticles to cladocerans, algae, rotifers and plants - effects of size and crystalline structure. - Chemosphere 90: 1083-1090, 2013. Go to original source...
  10. Cox, A., Venkatachalam, P., Sahi, S., Sharma, N.: Silver and titanium dioxide nanoparticle toxicity in plants: a review of current research. - Plant Physiol Biochem 107: 147-163, 2016. Go to original source...
  11. Cui, D., Zhang, P., Ma, Y., He, X., Li, Y., Zhang, J., Zhao, Y., Zhang, Z.: Effect of cerium oxide nanoparticles on asparagus lettuce cultured in an agar medium. - Environ. Sci. Nano 1: 459-465, 2014a. Go to original source...
  12. Cui, D., Zhang, P., Ma, Y., He, X., Li, Y., Zhao, Y., Zhang, Z.: Phytotoxicity of silver nanoparticles to cucumber (Cucumis sativus) and wheat (Triticum aestivum). - J. Zhejiang Univ. 15: 662-670. 2014b. Go to original source...
  13. Fan, R., Huang, Y., Grusak, M., Huang, C., Sherrier, D.: Effects of nano-TiO2 on the agronomically-relevant Rhizobium-legume symbiosis. - Sci. total Environ. 466: 503-512, 2014. Go to original source...
  14. Feizi, H., Kamali, M., Jafari, L., Moghaddam, P.: Phytotoxicity and stimulatory impacts of nanosized and bulk titanium dioxide on fennel (Foeniculum vulgare Mill). - Chemosphere 91: 506-511, 2013. Go to original source...
  15. Feizi, H., Moghaddam, P., Shahtahmassebi, N., Fotovat, A.: Impact of bulk and nanosized titanium dioxide (TiO2) on wheat seed germination and seedling growth. - Biol. Trace Element Res. 146: 101-106, 2012. Go to original source...
  16. Foltete, A.S., Masfaraud, J.F., Bigorgne, E., Nahmani, J., Chaurand, P., Botta, C., Labille, J., Rose, J., Ferard, J.F., Cotelle, S.: Environmental impact of sunscreen nanomaterials: ecotoxicity and genotoxicity of altered TiO2 nanocomposites on Vicia faba. - Environ. Pollut. 159: 2515-2522, 2011. Go to original source...
  17. Frazier, T., Burklew, C., Zhang, B.: Titanium dioxide nanoparticles affect the growth and microRNA expression of tobacco (Nicotiana tabacum). - Funct. integr. Genomics 14: 75-83, 2014. Go to original source...
  18. Garcia-Sanchez, S., Bernales, I., Cristobal, S.: Early response to nanoparticles in the Arabidopsis transcriptome compromises plant defence and root-hair development through salicylic acid signalling. - BMC Genomics 16: 341-357, 2015. Go to original source...
  19. Ghosh, M., Bandyopadhyay, M., Mukherjee, A.: Genotoxicity of titanium dioxide (TiO2) nanoparticles at two trophic levels: plant and human lymphocytes. - Chemosphere 81: 1253-1262, 2010. Go to original source...
  20. Gottschalk, F., Sun, T., Nowack, B.: Environmental concentrations of engineered nanomaterials: review of modeling and analytical studies. - Environ. Pollut. 181: 287-300, 2013. Go to original source...
  21. Handy, R.D., Van den Brink, N., Chappell, M., Muhling, M., Behra, R., Dusinská, M., Simpson, P., Ahtiainen, J., Jha, A.N., Seiter, J., Bednar, A., Kennedy, A., Fernandes, T.F., Riedike, M.: Practical considerations for conducting ecotoxicity test methods with manufactured nanomaterials: what have we learnt so far? - Ecotoxicology 21: 933-972, 2012. Go to original source...
  22. Hanif, H., Arshad, M., Ali, M., Ahmed, N., Qazi, I.: Phytoavailability of phosphorus to Lactuca sativa in response to soil applied TiO2 nanoparticles. - Pak. J. agr. Sci. 52: 177-182, 2015.
  23. Hawthorne, J., Musante, C., Sinha, S.K., White, J.C.: Accumulation and phytotoxicity of engineered nanoparticles to Cucurbita Pepo. - Int. J. Phytoremediat. 14: 429-442, 2012. Go to original source...
  24. Hurum, D.C., Agrios, A.G., Gray, K.A., Rajh, T., Thurnauer, M.C.: Explaining the enhanced photocatalytic activity of Degussa P25 mixed-phase TiO2 using EPR. - J. Phys. Chem. B 107: 4545-4549, 2003. Go to original source...
  25. Jiang, C., Jia, J., Zhai, S.: Mechanistic understanding of toxicity from nanocatalysts. - Int. mol. Sci. 15: 13967-13992, 2014a. Go to original source...
  26. Jiang, H., Qiu, X., Li, G., Li, W., Yin, L.: Silver nanoparticles induced accumulation of reactive oxygen species and alteration of antioxidant systems in the aquatic plant Spirodela polyrhiza. - Environ. Toxicol. Chem. 33: 1398-1405, 2014b. Go to original source...
  27. Kurepa, J., Paunesku, T., Vogt, S., Arora, H., Rabatic, B.M., Lu, J.J., Wanzer, M.B., Woloschak, G.E., Smalle, J.A.: Uptake and distribution of ultrasmall anatase TiO2 Alizarin Red S nanoconjugates in Arabidopsis thaliana. - Nano Lett. 10: 2296-2302, 2010. Go to original source...
  28. Larue, C., Castillo-Michel, H., Sobanska, S., Trcera, N., Sorieul, S., Cecillon, L., Ouerdane, L., Legros, S., Sarret, G.: Fate of pristine TiO2 nanoparticles and aged paintcontaining TiO2 nanoparticles in lettuce crop after foliar exposure. - J. Hazard. Mater. 273: 17-26, 2014. Go to original source...
  29. Larue, C., Laurette, J., Herlin-Boime. N., Khodja. H., Fayard. B., Flank. A.M., Brisset. F., Carriere. M.: Accumulation, translocation and impact of TiO2 nanoparticles in wheat (Triticum aestivum spp.): influence of diameter and crystal phase. - Sci. Total Environ. 431: 197-208, 2012a. Go to original source...
  30. Larue, C., Veronesi, G., Flank, A.M., Surble, S., Herlin-Boime, N., Carriere, M.: Comparative uptake and impact of TiO2 nanoparticles in wheat and rapeseed. - J. Toxicol. Environ. Health A 75: 722-734, 2012b. Go to original source...
  31. Lopez-Moreno, M.L., De la Rosa, G., Hernandez-Viezcas, J.A., Castillo-Michel, H., Botez, C.E., Peralta-Videa, J.R., Gardea-Torresdey, J.L.: Evidence of the differential biotransformation and genotoxicity of ZnO and CeO2 nanoparticles on soybean (Glycine max) Plants. - Environ. Sci. Technol. 44: 7315-7320, 2010. Go to original source...
  32. Loureiro, J., Rodriguez, E., Dolezel, J., Santos, C.: Two new nuclear isolation buffers for plant DNA flow cytometry: a test with 37 species. - Ann. Bot. 100: 875-888. 2007. Go to original source...
  33. Ma, C., White, J., Dhankher, O., Xing, B.: Metal-based nanotoxicity and detoxification pathways in higher plants. - Environ. Sci. Technol. 49: 7109-7122, 2015a. Go to original source...
  34. Ma, Y., Zhang, P., Zhang, Z., He, X., Li, Y., Zhang, J., Zheng, L., Chu, S., Yang, K., Zhao, Y., Chai, Z.: Origin of the different phytotoxicity and biotransformation of cerium and lanthanum oxide nanoparticles in cucumber. - Nanotoxicology 9: 262-270, 2015b. Go to original source...
  35. Miralles, P., Church, T.L., Harris, A.T.: Toxicity, uptake, and translocation of engineered nanomaterials in vascular plants. - Environ. Sci. Technol. 46: 9224-9239, 2012. Go to original source...
  36. Mohammadi, R., Maali-Amiri, R., Mantri, N.: Effect of TiO2 nanoparticles on oxidative damage and antioxidant defense systems in chickpea seedlings during cold stress. - Russ. J. Plant Physiol. 61: 768-775, 2014. Go to original source...
  37. Moreno-Olivas, F., Gant, V., Johnson, K., Peralta-Videa, J., Gardea-Torresdey, J.: Random amplified polymorphic DNA reveals that TiO2 nanoparticles are genotoxic to Cucurbita pepo. - J.. Zhejiang Univ. 15: 618-623, 2014. Go to original source...
  38. Nair, P.M.G., Chung, I.M.: The responses of germinating seedlings of green peas to copper oxide nanoparticles. - Biol. Plant. 59: 591-595, 2015. Go to original source...
  39. Pakrashi, S., Jain, N., Dalai, S., Jayakumar, J., Chandrasekaran, P., Raichur, A., Chandrasekaran, N., Mukherjee, A.: In vivo genotoxicity assessment of titanium dioxide nanoparticles by Allium cepa root tip assay at high exposure concentrations. - Plos ONE 9: e87789, 2014. Go to original source...
  40. Palmqvist, N., Bejai, S., Meijer, J., Seisenbaeva, G., Kessler, V.: Nano titania aided clustering and adhesion of beneficial bacteria to plant roots to enhance crop growth and stress management. - Sci. Rep. 5: 10146-10158, 2015. Go to original source...
  41. Panda, K.K., Acharya, V.M.M., Krishnaveni, R., Padhi, B.K., Sarangi, S.N., Sahu, S.N., Panda, B.B.: In vitro biosynthesis and genotoxicity bioassay of silver nanoparticles using plants. - Toxicol. in Vitro 25: 1097-1105, 2011. Go to original source...
  42. Parveen, A., Rao, S.: Effect of nanosilver on seed germination and seedling growth in Pennisetum glaucum. - J. Cluster. Sci. 26: 693-701, 2015. Go to original source...
  43. Ricci, P.C., Carbonaro, C.M., Stagi, L., Salis, M., Casu, A., Enzo, S., Delogu, F.: Anatase-to-rutile phase transition in TiO2 nanoparticles irradiated by visible light. - J. Phys. Chem. 117: 7850-7857, 2013. Go to original source...
  44. Sanchez, A., Garcia, A., Espinosa, R., Delgado, L., Casals, E., Gonzalez, E., Puntes, V., Barata, C., Font, X.: Acute toxicity of cerium oxide, titanium oxide and iron oxide nanoparticles using standardized tests. - Desalination 269:136-141, 2011. Go to original source...
  45. Seeger, E., Baun, A., Kastner, M., Trapp, S.: Insignificant acute toxicity of TiO2 nanoparticles to willow trees. - J. Soils Sediments 9: 46-53, 2009. Go to original source...
  46. Servin, A., Castillo-Michel, H., Hernandez-Viezcas, J., Diaz, B., Peralta-Videa, J., Gardea-Torresdey, J.: Synchrotron Micro-XRE and Micro-XANES confirmation of the uptake and translocation of TiO2 nanoparticles in cucumber (Cucumis sativus) plants. - Environ. Sci. Technol. 46: 7637-7643, 2012. Go to original source...
  47. Shi, H., Magaye, R., Castranova, V., Zhao, J. Titanium dioxide nanoparticles: a review of current toxicological data. - Part. Fibre Toxicol. 10: 15-48, 2013. Go to original source...
  48. Silva, S., Oliveira, H., Craveiro, S., Calado, A.J., Santos, C.: Pure anatase and rutile+anatase nanoparticles differently affect wheat seedlings. - Chemosphere 151: 68-75, 2016. Go to original source...
  49. Song, U., Shin, M., Lee, G., Roh, J., Kim, Y., Lee, E.: Functional analysis of TiO2 nanoparticle toxicity in three plant species. - Biol. Trace Element Res. 155: 93-103, 2013. Go to original source...
  50. Srivastava, V., Gusain, D., Sharma, Y.: Critical review on the toxicity of some widely used engineered nanoparticles. - Ind. Eng. Chem. Res. 54: 6209-6233, 2015. Go to original source...
  51. Sun, T.Y., Conroy, G., Donner, E., Hungerbuhler, K., Lombi, E., Nowack, B.: Probabilistic modelling of engineered nanomaterial emissions to the environment: a spatiotemporal approach. - Environ. Sci. Nano 2: 340-351, 2015. Go to original source...
  52. Tumburu, L., Andersen, C., Rygiewicz, P., Reichman, J.: Phenotypic and genomic responses to titanium dioxide and cerium oxide nanoparticles in Arabidopsis germinants. - Environ. Toxicol. Chem. 34: 70-83, 2015. Go to original source...
  53. Vannini, C., Domingo, G., Onelli, E., De Mattia, F., Bruni, I., Marsoni, M., Bracale, M.: Phytotoxic and genotoxic effects of silver nanoparticles exposure on germinating wheat seedlings. - J. Plant Physiol. 171: 1142-1148, 2014. Go to original source...
  54. Weir, A., Westerhoff, P., Fabricius, L., Hristovski, K., Von Goetz, N.: Titanium dioxide nanoparticles in food and personal care products. - Environ. Sci. Technol. 46: 2242-2250, 2012. Go to original source...
  55. Yang, F., Liu, C., Gao, F., Su, M., Wu, X., Zheng, L., Hong, F., Yang, P.: The improvement of spinach growth by nanoanatase TiO2 treatment is related to nitrogen photoreduction. - Biol. Trace Elem. Res. 119: 77-88, 2007. Go to original source...




-