Skip to main content
Log in

Conjugates of Antisense Oligonucleotides with the Tat and Antennapedia Cell-Penetrating Peptides: Effects on Cellular Uptake, Binding to Target Sequences, and Biologic Actions

  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose. The attainment of effective intracellular delivery remains an important issue for pharmacologic applications of antisense oligonucleotides. Here, we describe the synthesis, binding properties, and biologic properties of peptide-oligonucleotide conjugates comprised of the Tat and Ant cell-penetrating peptides with 2′-O-methyl phosphorothioate oligonucleotides.

Methods. The biologic assay used in this study measures the ability of the antisense molecule to correct splicing of an aberrant intron inserted into the Luciferase gene; thus, this assay clearly demonstrates the delivery of functional antisense molecules to the splicing machinery within the nucleus. The binding affinities of the conjugates to their target sequences were measured by surface plasmon resonance (BIAcor) techniques.

Results. The peptide-oligonucleotide conjugates progressively entered cells over a period of hours and were detected in cytoplasmic vesicles and in the nucleus. Peptide-oligonucleotide conjugates targeted to the aberrant splice site, but not mismatched controls, caused an increase in Luciferase activity in a dose-responsive manner. The kinetics of Luciferase appearance were consistent with the course of the uptake process for the conjugates. The effects of peptide conjugation on the hybridization characteristics of the oligonucleotides were also examined using surface plasmon resonance. The peptide-oligonucleotide conjugates displayed binding affinities and selectivities similar to those of unconjugated oligonucleotides.

Conclusions. Conjugation with cell-penetrating peptides enhances oligonucleotide delivery to the nucleus without interfering with the base-pairing function of antisense oligonucleotides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. C. F. Bennett. Antisense oligonucleotides: Is the glass half full or half empty? Biochem. Pharmacol. 55:9–19 (1998).

    Google Scholar 

  2. C. A. Stein and Y.-C. Cheng. Antisense oligonucleotides as therapeutic agents-is the bullet really magical? Science 261:1004–1012 (1993).

    Google Scholar 

  3. P. Wittung-Stafshede. Genetic medicine-when will it come to the drugstore. Science 281:657–658 (1998).

    Google Scholar 

  4. P. T. Ho and D. R. Parkinson. Antisense oligonucleotides as therapeutics for malignant diseases. Semin. Oncol. 24:187–202 (1997).

    Google Scholar 

  5. J. S. Waters, A. Webb, D. Cunningham, P. A. Clarke, F. Raynaud, F. di Stefano, and F. E. Cotter. Phase I clinical and pharmacokinetic study of bcl-2 antisense oligonucleotide therapy in patients with non-Hodgkin's lymphoma. J. Clin. Oncol. 18: 1812–1823 (2000).

    Google Scholar 

  6. S. T. Crooke. Molecular mechanisms of action of antisense drugs. Biochim. Biophys. Acta 1489:31–44 (1999).

    Google Scholar 

  7. A. M. Gewirtz, D. L. Sokol, and M. Z. Ratajczak. Nucleic acid therapeutics: state of the art future prospects. Blood 92:712–736 (1998).

    Google Scholar 

  8. R. L. Juliano, S. Alahari, H. Yoo, R. Kole, and M. Cho. Antisense pharmacodynamics: critical issues in the transport and delivery of antisense oligonucleotides. Pharm. Res. 16:494–502 (1999).

    Google Scholar 

  9. J. G. Lewis. K.-Y. Lin, A. Kothavale, W. M. Flanagan, M. D. Matteucci, R. B. DePrincr, R. A. J. Mook, R. W. Hendren, and R. W. Wagner. A serum-resistant cytofectin for cellular delivery of antisense oligodeoxynucleotides and plasmid DNA. Proc. Natl. Acad. Sci. USA 93:3176–3181 (1996).

    Google Scholar 

  10. P. L. Felgner, Y. J. Tsai, L. Sukhu, C. J. Wheeler, M. Manthorpe, J. Marshall, and S. H. Cheng. Improved cationic lipid formulations for in vivo gene therapy. Ann. N.Y. Acad. Sci. 772:126–139 (1995).

    Google Scholar 

  11. R. DeLong, K. Stephenson, T. Loftus, S. K. Alahari, M. H. Fisher, and R. L. Juliano. Characterization of complexes of oligonucleotides with polyamidoamine starburst dendrimers and effects on intracellular delivery. J. Pharm. Sci. 86:762–764 (1997).

    Google Scholar 

  12. H. Yoo, P. Sazani, and R. L. Juliano. PAMAM dendrimers as delivery agents for antisense oligonucleotides. Pharm. Res. 16: 1799–1804 (1999).

    Google Scholar 

  13. M. Lindgren, M. Hallbrink, A. Prochiantz, and U. Langel. Cell-penetrating peptides. Trends Pharm. Sci. 21:99–103 (2000).

    Google Scholar 

  14. R. L. Juliano and H. Yoo. Aspects of the transport and delivery of antisense oligonucleotides. Curr. Opin. Mol. Ther. 2:297–303 (2000).

    Google Scholar 

  15. S. Falwell, J. Seery, Y. Daikh, C. Moore, L. L. Chen, B. Pepinsky, and J. Barsooum. Tat mediated delivery of heterologous proteins into cells. Proc. Natl. Acad. Sci. USA 91:664–668 (1994).

    Google Scholar 

  16. D. Derossi, S. Calvet, A. Trembleau, A. Brunissen, G. Chassaing, and A. Prochiantz. Cell internalization of the third helix of the Antennapedia homeodomain is receptor-independent. J. Biol. Chem. 271:18188–18193 (1996).

    Google Scholar 

  17. E. Vives, P. Brodin, and B. Lebleu. A truncated HIV-1 Tat protein basic domain rapidly translocates through the plasma membrane and accumulates in the cell nucleus. J. Biol. Chem. 272: 16010–16017 (1997).

    Google Scholar 

  18. G. Aldrian-Herrada, M. G. Desarmenien, H. Orcel, L. Boissin-Agasse, J. Mery, J. Brugidou, and A. Rabie. A peptide nucleic acid (PNA) is more rapidly internalized in culturerd neurons when coupled to a retro-inverso delivery peptide. The antisense activity depresses the target mRNA and protein in magnocellular oxytocin neurons. Nucleic Acids Res. 26:4910–4916 (1998).

    Google Scholar 

  19. M. Pooga, U. Soomets, M. Hallbrink, A. Valkna, K. Saar, K. Rezaei, U. Kahl. J. X. Hau, X. J. Xu, Z. Wiesenfeld-Hallin, T. Hokfelt, T. Bartfai, and U. Langel. Cell penetrating PNA constructs regulate galanin receptor levels and modify pain transmission in vivo. Nat. Biotechnol. 16:857–861 (1998).

    Google Scholar 

  20. A. Astriab-Fisher, D. S. Sergueev, M. Fisher, B. R. Shaw, and R. L. Juliano. Antisense inhibition of P-glycoprotein expression using peptide-oligonucleotide conjugates. Biochem. Pharmacol. 60: 83–90 (2000).

    Google Scholar 

  21. H. Nagahara, A. M. Vocero-Akbani, E. L. Snyder, A. Ho, D. G. Latham, N. A. Lissy, M. Becker-Hapak, S. A. Ezhevshy, and S. F. Dowdy. Transduction of full-length TAT fusion proteins into mammalian cells: TAT-p27Kip1 induces cell migration. Nat. Med. 4:1449–1452 (1998).

    Google Scholar 

  22. S. R. Schwarze, A. Ho, A. Vocero-Akbani, and S. F. Dowdy. In vivo protein transduction: delivery of a biologically active protein into the mouse. Science 285:1569–1572 (1999).

    Google Scholar 

  23. R. Kole. Modification of pre-mRNA splicing by antisense oligonucleotides. In C. A. Stein and A. M. Krieg (eds.), Applied Antisense Oligonucleotide Technology Willey-Liss, Inc., New York, 1998 pp. 451–469.

    Google Scholar 

  24. H. Sierakowska, M. J. Sambade, S. Agrawal, and R. Kole. Repair of thalassemic human beta-globin mRNA in mammalian cells by antisense oligonucleotides. Proc. Natl. Acad. Sci. USA 93:12840–12844 (1996).

    Google Scholar 

  25. G. Lacerra, H. Sierakowska, C. Carestia, S. Fucharoen, J. Summerton, D. Weller, and R. Kole. Restoration of hemoglobin A synthesis in erythroid cells from peripheral blood of thalassemic patients. Proc. Natl. Acad. Sci. USA 97:9591–9596 (2000).

    Google Scholar 

  26. S. H. Kang, M. J. Cho, and R. Kole. Up-regulation of the luciferase gene expression with antisense oligonucleotides: implications and applications in functional assay development. Biochemistry 37:6235–6239 (1998).

    Google Scholar 

  27. E. Vives and B. Lebleu. Selective coupling of a highly basic peptide to an oligonucleotide. Tetrahedron Lett. 38:1183–1186 (1997).

    Google Scholar 

  28. U. Jonsson et al. Real-time biospecific interaction analysis using surface plasmon resonance and a sensor chip technology. Biotechniques 11:620–627 (1991).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. L. Juliano.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Astriab-Fisher, A., Sergueev, D., Fisher, M. et al. Conjugates of Antisense Oligonucleotides with the Tat and Antennapedia Cell-Penetrating Peptides: Effects on Cellular Uptake, Binding to Target Sequences, and Biologic Actions. Pharm Res 19, 744–754 (2002). https://doi.org/10.1023/A:1016136328329

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1016136328329

Navigation

-