Skip to main content
Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
EMBO J. 1986 Jun; 5(6): 1221–1227.
PMCID: PMC1166931
PMID: 3015592

The structure of the mouse glutathione peroxidase gene: the selenocysteine in the active site is encoded by the 'termination' codon, TGA.

Abstract

Glutathione peroxidase (GSHPx) is an important selenium-containing enzyme which protects cells from peroxide damage and also has a role in leukotriene formation. We report the identification of a genomic recombinant as encoding the entire mouse GSHPx gene. Surprisingly, the selenocysteine in the active site of the enzyme is encoded by TGA: this has been confirmed by primer extension/dideoxy sequencing experiments using reticulocyte mRNA. The same site of transcription initiation is used in three tissues in which the GSHPx mRNA is expressed at high levels (erythroblast, liver and kidney). Like some other regulated 'house-keeping' genes, the GSHPx gene has Sp1 binding site consensus sequences but no 'ATA' and 'CAAT' consensus sequences upstream of the transcription initiation site. Moreover, there is a cluster of two Sp1 binding site consensus sequences and two SV40 core enhancer sequences in the 3' region of the gene, close to the previously mapped position of a DNase I-hypersensitive site found only in tissues expressing the GSHPx mRNA at high levels.

Full text

Full text is available as a scanned copy of the original print version. Get a printable copy (PDF file) of the complete article (1.6M), or click on a page image below to browse page by page. Links to PubMed are also available for Selected References.

Images in this article

Click on the image to see a larger version.

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  • Affara N, Goldfarb PS, Yang QS, Harrison PR. Patterns of expression of erythroblast non-globin mRNAs. Nucleic Acids Res. 1983 Feb 25;11(4):931–945. [PMC free article] [PubMed] [Google Scholar]
  • Affara N, Fleming J, Goldfarb PS, Black E, Thiele B, Harrison PR. Analysis of chromatin changes associated with the expression of globin and non-globin genes in cell hybrids between erythroid and other cells. Nucleic Acids Res. 1985 Aug 12;13(15):5629–5644. [PMC free article] [PubMed] [Google Scholar]
  • Berk AJ, Sharp PA. Sizing and mapping of early adenovirus mRNAs by gel electrophoresis of S1 endonuclease-digested hybrids. Cell. 1977 Nov;12(3):721–732. [PubMed] [Google Scholar]
  • Biggin MD, Gibson TJ, Hong GF. Buffer gradient gels and 35S label as an aid to rapid DNA sequence determination. Proc Natl Acad Sci U S A. 1983 Jul;80(13):3963–3965. [PMC free article] [PubMed] [Google Scholar]
  • Blum J, Fridovich I. Inactivation of glutathione peroxidase by superoxide radical. Arch Biochem Biophys. 1985 Aug 1;240(2):500–508. [PubMed] [Google Scholar]
  • Bryant RW, Bailey JM. Role of selenium-dependent glutathione peroxidase in platelet lipoxygenase metabolism. Prog Lipid Res. 1981;20:189–194. [PubMed] [Google Scholar]
  • Bryant RW, Simon TC, Bailey JM. Role of glutathione peroxidase and hexose monophosphate shunt in the platelet lipoxygenase pathway. J Biol Chem. 1982 Dec 25;257(24):14937–14943. [PubMed] [Google Scholar]
  • Bryant RW, Simon TC, Bailey JM. Hydroperoxy fatty acid formation in selenium deficient rat platelets: coupling of glutathione peroxidase to the lipoxygenase pathway. Biochem Biophys Res Commun. 1983 Nov 30;117(1):183–189. [PubMed] [Google Scholar]
  • Chaudiere J, Wilhelmsen EC, Tappel AL. Mechanism of selenium-glutathione peroxidase and its inhibition by mercaptocarboxylic acids and other mercaptans. J Biol Chem. 1984 Jan 25;259(2):1043–1050. [PubMed] [Google Scholar]
  • Chirgwin JM, Przybyla AE, MacDonald RJ, Rutter WJ. Isolation of biologically active ribonucleic acid from sources enriched in ribonuclease. Biochemistry. 1979 Nov 27;18(24):5294–5299. [PubMed] [Google Scholar]
  • Christophersen BO. Reduction of X-ray-induced DNA and thymine hydroperoxides by rat liver glutathione peroxidase. Biochim Biophys Acta. 1969 Aug 20;186(2):387–389. [PubMed] [Google Scholar]
  • Condell RA, Tappel AL. Amino acid sequence around the active-site selenocysteine of rat liver glutathione peroxidase. Biochim Biophys Acta. 1982 Dec 20;709(2):304–309. [PubMed] [Google Scholar]
  • Cone JE, Del Río RM, Davis JN, Stadtman TC. Chemical characterization of the selenoprotein component of clostridial glycine reductase: identification of selenocysteine as the organoselenium moiety. Proc Natl Acad Sci U S A. 1976 Aug;73(8):2659–2663. [PMC free article] [PubMed] [Google Scholar]
  • Epp O, Ladenstein R, Wendel A. The refined structure of the selenoenzyme glutathione peroxidase at 0.2-nm resolution. Eur J Biochem. 1983 Jun 1;133(1):51–69. [PubMed] [Google Scholar]
  • Geller AI, Rich A. A UGA termination suppression tRNATrp active in rabbit reticulocytes. Nature. 1980 Jan 3;283(5742):41–46. [PubMed] [Google Scholar]
  • Goldfarb PS, O'Prey J, Affara N, Yang QS, Harrison PR. Isolation of non-globin genes expressed preferentially in mouse erythroid cells. Nucleic Acids Res. 1983 Jun 11;11(11):3517–3530. [PMC free article] [PubMed] [Google Scholar]
  • Guidi G, Schiavon R, Biasioli A, Perona G. The enzyme glutathione peroxidase in arachidonic acid metabolism of human platelets. J Lab Clin Med. 1984 Oct;104(4):574–582. [PubMed] [Google Scholar]
  • Günzler WA, Steffens GJ, Grossmann A, Kim SM, Otting F, Wendel A, Flohé L. The amino-acid sequence of bovine glutathione peroxidase. Hoppe Seylers Z Physiol Chem. 1984 Feb;365(2):195–212. [PubMed] [Google Scholar]
  • Hamlyn PH, Browniee GG, Cheng CC, Gait MJ, Milstein C. Complete sequence of constant and 3' noncoding regions of an immunoglobulin mRNA using the dideoxynucleotide method of RNA sequencing. Cell. 1978 Nov;15(3):1067–1075. [PubMed] [Google Scholar]
  • Harrison PR. Molecular analysis of erythropoiesis. A current appraisal. Exp Cell Res. 1984 Dec;155(2):321–344. [PubMed] [Google Scholar]
  • Hawkes WC, Tappel AL. In vitro synthesis of glutathione peroxidase from selenite. Translational incorporation of selenocysteine. Biochim Biophys Acta. 1983 Mar 10;739(2):225–234. [PubMed] [Google Scholar]
  • Hawkes WC, Lyons DE, Tappel AL. Identification of a selenocysteine-specific aminoacyl transfer RNA from rat liver. Biochim Biophys Acta. 1982 Dec 31;699(3):183–191. [PubMed] [Google Scholar]
  • Hodgson EK, Fridovich I. The interaction of bovine erythrocyte superoxide dismutase with hydrogen peroxide: inactivation of the enzyme. Biochemistry. 1975 Dec 2;14(24):5294–5299. [PubMed] [Google Scholar]
  • Jones JB, Dilworth GL, Stadtman TC. Occurrence of selenocysteine in the selenium-dependent formate dehydrogenase of Methanococcus vannielii. Arch Biochem Biophys. 1979 Jul;195(2):255–260. [PubMed] [Google Scholar]
  • Khoury G, Gruss P. Enhancer elements. Cell. 1983 Jun;33(2):313–314. [PubMed] [Google Scholar]
  • Lee MG, Lewis SA, Wilde CD, Cowan NJ. Evolutionary history of a multigene family: an expressed human beta-tubulin gene and three processed pseudogenes. Cell. 1983 Jun;33(2):477–487. [PubMed] [Google Scholar]
  • Masters JN, Attardi G. Discrete human dihydrofolate reductase gene transcripts present in polysomal RNA map with their 5' ends several hundred nucleotides upstream of the main mRNA start site. Mol Cell Biol. 1985 Mar;5(3):493–500. [PMC free article] [PubMed] [Google Scholar]
  • Maxam AM, Gilbert W. Sequencing end-labeled DNA with base-specific chemical cleavages. Methods Enzymol. 1980;65(1):499–560. [PubMed] [Google Scholar]
  • Melton DW, Konecki DS, Brennand J, Caskey CT. Structure, expression, and mutation of the hypoxanthine phosphoribosyltransferase gene. Proc Natl Acad Sci U S A. 1984 Apr;81(7):2147–2151. [PMC free article] [PubMed] [Google Scholar]
  • Messing J, Vieira J. A new pair of M13 vectors for selecting either DNA strand of double-digest restriction fragments. Gene. 1982 Oct;19(3):269–276. [PubMed] [Google Scholar]
  • MILLS GC. Hemoglobin catabolism. I. Glutathione peroxidase, an erythrocyte enzyme which protects hemoglobin from oxidative breakdown. J Biol Chem. 1957 Nov;229(1):189–197. [PubMed] [Google Scholar]
  • Nirenberg M, Caskey T, Marshall R, Brimacombe R, Kellogg D, Doctor B, Hatfield D, Levin J, Rottman F, Pestka S, et al. The RNA code and protein synthesis. Cold Spring Harb Symp Quant Biol. 1966;31:11–24. [PubMed] [Google Scholar]
  • Osborne TF, Goldstein JL, Brown MS. 5' end of HMG CoA reductase gene contains sequences responsible for cholesterol-mediated inhibition of transcription. Cell. 1985 Aug;42(1):203–212. [PubMed] [Google Scholar]
  • Patek PQ, Collins JL, Cohn M. Transformed cell lines susceptible or resistant to in vivo surveillance against tumorigenesis. Nature. 1978 Nov 30;276(5687):510–511. [PubMed] [Google Scholar]
  • Rapoport SM, Schewe T, Wiesner R, Halangk W, Ludwig P, Janicke-Höhne M, Tannert C, Hiebsch C, Klatt D. The lipoxygenase of reticulocytes. Purification, characterization and biological dynamics of the lipoxygenase; its identity with the respiratory inhibitors of the reticulocyte. Eur J Biochem. 1979 Jun 1;96(3):545–561. [PubMed] [Google Scholar]
  • Reynolds GA, Basu SK, Osborne TF, Chin DJ, Gil G, Brown MS, Goldstein JL, Luskey KL. HMG CoA reductase: a negatively regulated gene with unusual promoter and 5' untranslated regions. Cell. 1984 Aug;38(1):275–285. [PubMed] [Google Scholar]
  • Samuelsson B. Leukotrienes: mediators of immediate hypersensitivity reactions and inflammation. Science. 1983 May 6;220(4597):568–575. [PubMed] [Google Scholar]
  • Sanger F, Coulson AR. The use of thin acrylamide gels for DNA sequencing. FEBS Lett. 1978 Mar 1;87(1):107–110. [PubMed] [Google Scholar]
  • Sanger F, Nicklen S, Coulson AR. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. [PMC free article] [PubMed] [Google Scholar]
  • Sevanian A, Muakkassah-Kelly SF, Montestruque S. The influence of phospholipase A2 and glutathione peroxidase on the elimination of membrane lipid peroxides. Arch Biochem Biophys. 1983 Jun;223(2):441–452. [PubMed] [Google Scholar]
  • Tappel AL. Selenium--glutathione peroxidase: properties and synthesis. Curr Top Cell Regul. 1984;24:87–97. [PubMed] [Google Scholar]
  • Valerio D, Duyvesteyn MG, Dekker BM, Weeda G, Berkvens TM, van der Voorn L, van Ormondt H, van der Eb AJ. Adenosine deaminase: characterization and expression of a gene with a remarkable promoter. EMBO J. 1985 Feb;4(2):437–443. [PMC free article] [PubMed] [Google Scholar]
  • Weaver RF, Weissmann C. Mapping of RNA by a modification of the Berk-Sharp procedure: the 5' termini of 15 S beta-globin mRNA precursor and mature 10 s beta-globin mRNA have identical map coordinates. Nucleic Acids Res. 1979 Nov 10;7(5):1175–1193. [PMC free article] [PubMed] [Google Scholar]
  • Yasuda M, Fujita T. Effect of lipid peroxidation on phospholipase A2 activity of rat liver mitochondria. Jpn J Pharmacol. 1977 Jun;27(3):429–435. [PubMed] [Google Scholar]
  • Young PA, Kaiser II. Aminoacylation of Escherichia coli cysteine tRNA by selenocysteine. Arch Biochem Biophys. 1975 Dec;171(2):483–489. [PubMed] [Google Scholar]

Articles from The EMBO Journal are provided here courtesy of Nature Publishing Group

-