Skip to main content
Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Genetics. 2000 Sep; 156(1): 257–268.
PMCID: PMC1461228
PMID: 10978290

A genome-wide departure from the standard neutral model in natural populations of Drosophila.

Abstract

We analyze nucleotide polymorphism data for a large number of loci in areas of normal to high recombination in Drosophila melanogaster and D. simulans (24 and 16 loci, respectively). We find a genome-wide, systematic departure from the neutral expectation for a panmictic population at equilibrium in natural populations of both species. The distribution of sequence-based estimates of 2Nc across loci is inconsistent with the assumptions of the standard neutral theory, given the observed levels of nucleotide diversity and accepted values for recombination and mutation rates. Under these assumptions, most estimates of 2Nc are severalfold too low; in other words, both species exhibit greater intralocus linkage disequilibrium than expected. Variation in recombination or mutation rates is not sufficient to account for the excess of linkage disequilibrium. While an equilibrium island model does not seem to account for the data, more complicated forms of population structure may. A proper test of alternative demographic models will require loci to be sampled in a more consistent fashion.

Full Text

The Full Text of this article is available as a PDF (257K).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  • Walker C. First-rate scholarship by LeVasseur. Image J Nurs Sch. 1999;31(1):9–10. [PubMed] [Google Scholar]
  • Aguadé M, Miyashita N, Langley CH. Polymorphism and divergence in the Mst26A male accessory gland gene region in Drosophila. Genetics. 1992 Nov;132(3):755–770. [PMC free article] [PubMed] [Google Scholar]
  • Andolfatto P, Kreitman M. Molecular variation at the In(2L)t proximal breakpoint site in natural populations of Drosophila melanogaster and D. simulans. Genetics. 2000 Apr;154(4):1681–1691. [PMC free article] [PubMed] [Google Scholar]
  • Andolfatto P, Nordborg M. The effect of gene conversion on intralocus associations. Genetics. 1998 Mar;148(3):1397–1399. [PMC free article] [PubMed] [Google Scholar]
  • Andolfatto P, Wall JD, Kreitman M. Unusual haplotype structure at the proximal breakpoint of In(2L)t in a natural population of Drosophila melanogaster. Genetics. 1999 Nov;153(3):1297–1311. [PMC free article] [PubMed] [Google Scholar]
  • Ayala FJ, Hartl DL. Molecular drift of the bride of sevenless (boss) gene in Drosophila. Mol Biol Evol. 1993 Sep;10(5):1030–1040. [PubMed] [Google Scholar]
  • Ayala FJ, Chang BS, Hartl DL. Molecular evolution of the Rh3 gene in Drosophila. Genetica. 1993;92(1):23–32. [PubMed] [Google Scholar]
  • Begun DJ, Aquadro CF. Levels of naturally occurring DNA polymorphism correlate with recombination rates in D. melanogaster. Nature. 1992 Apr 9;356(6369):519–520. [PubMed] [Google Scholar]
  • Begun DJ, Aquadro CF. African and North American populations of Drosophila melanogaster are very different at the DNA level. Nature. 1993 Oct 7;365(6446):548–550. [PubMed] [Google Scholar]
  • Begun DJ, Aquadro CF. Evolutionary inferences from DNA variation at the 6-phosphogluconate dehydrogenase locus in natural populations of drosophila: selection and geographic differentiation. Genetics. 1994 Jan;136(1):155–171. [PMC free article] [PubMed] [Google Scholar]
  • Begun DJ, Aquadro CF. Molecular variation at the vermilion locus in geographically diverse populations of Drosophila melanogaster and D. simulans. Genetics. 1995 Jul;140(3):1019–1032. [PMC free article] [PubMed] [Google Scholar]
  • Braverman JM, Hudson RR, Kaplan NL, Langley CH, Stephan W. The hitchhiking effect on the site frequency spectrum of DNA polymorphisms. Genetics. 1995 Jun;140(2):783–796. [PMC free article] [PubMed] [Google Scholar]
  • Brooks LD, Marks RW. The organization of genetic variation for recombination in Drosophila melanogaster. Genetics. 1986 Oct;114(2):525–547. [PMC free article] [PubMed] [Google Scholar]
  • Charlesworth B. Background selection and patterns of genetic diversity in Drosophila melanogaster. Genet Res. 1996 Oct;68(2):131–149. [PubMed] [Google Scholar]
  • Charlesworth D, Charlesworth B, Morgan MT. The pattern of neutral molecular variation under the background selection model. Genetics. 1995 Dec;141(4):1619–1632. [PMC free article] [PubMed] [Google Scholar]
  • Chovnick A. Gene conversion and transfer of genetic information within the inverted region of inversion heterozygotes. Genetics. 1973 Sep;75(1):123–131. [PMC free article] [PubMed] [Google Scholar]
  • Cirera S, Aguadé M. Evolutionary history of the sex-peptide (Acp70A) gene region in Drosophila melanogaster. Genetics. 1997 Sep;147(1):189–197. [PMC free article] [PubMed] [Google Scholar]
  • Clark AG, Wang L. Molecular population genetics of Drosophila immune system genes. Genetics. 1997 Oct;147(2):713–724. [PMC free article] [PubMed] [Google Scholar]
  • Comeron JM, Kreitman M, Aguadé M. Natural selection on synonymous sites is correlated with gene length and recombination in Drosophila. Genetics. 1999 Jan;151(1):239–249. [PMC free article] [PubMed] [Google Scholar]
  • Cooke PH, Oakeshott JG. Amino acid polymorphisms for esterase-6 in Drosophila melanogaster. Proc Natl Acad Sci U S A. 1989 Feb;86(4):1426–1430. [PMC free article] [PubMed] [Google Scholar]
  • David JR, Capy P. Genetic variation of Drosophila melanogaster natural populations. Trends Genet. 1988 Apr;4(4):106–111. [PubMed] [Google Scholar]
  • Dooner HK, Martínez-Férez IM. Recombination occurs uniformly within the bronze gene, a meiotic recombination hotspot in the maize genome. Plant Cell. 1997 Sep;9(9):1633–1646. [PMC free article] [PubMed] [Google Scholar]
  • Jeffreys AJ, Barber R, Bois P, Buard J, Dubrova YE, Grant G, Hollies CR, May CA, Neumann R, Panayi M, et al. Human minisatellites, repeat DNA instability and meiotic recombination. Electrophoresis. 1999 Jun;20(8):1665–1675. [PubMed] [Google Scholar]
  • Kambysellis MP, Ho KF, Craddock EM, Piano F, Parisi M, Cohen J. Pattern of ecological shifts in the diversification of Hawaiian Drosophila inferred from a molecular phylogeny. Curr Biol. 1995 Oct 1;5(10):1129–1139. [PubMed] [Google Scholar]
  • Karotam J, Delves AC, Oakeshott JG. Conservation and change in structural and 5' flanking sequences of esterase 6 in sibling Drosophila species. Genetica. 1993;88(1):11–28. [PubMed] [Google Scholar]
  • Keightley PD, Eyre-Walker A. Terumi Mukai and the riddle of deleterious mutation rates. Genetics. 1999 Oct;153(2):515–523. [PMC free article] [PubMed] [Google Scholar]
  • Gillespie JH. Junk ain't what junk does: neutral alleles in a selected context. Gene. 1997 Dec 31;205(1-2):291–299. [PubMed] [Google Scholar]
  • Goss PJ, Lewontin RC. Detecting heterogeneity of substitution along DNA and protein sequences. Genetics. 1996 May;143(1):589–602. [PMC free article] [PubMed] [Google Scholar]
  • Kirby DA, Stephan W. Haplotype test reveals departure from neutrality in a segment of the white gene of Drosophila melanogaster. Genetics. 1995 Dec;141(4):1483–1490. [PMC free article] [PubMed] [Google Scholar]
  • Griffiths RC, Marjoram P. Ancestral inference from samples of DNA sequences with recombination. J Comput Biol. 1996 Winter;3(4):479–502. [PubMed] [Google Scholar]
  • Kirby DA, Stephan W. Multi-locus selection and the structure of variation at the white gene of Drosophila melanogaster. Genetics. 1996 Oct;144(2):635–645. [PMC free article] [PubMed] [Google Scholar]
  • Hale LR, Singh RS. Mitochondrial DNA variation and genetic structure in populations of Drosophila melanogaster. Mol Biol Evol. 1987 Nov;4(6):622–637. [PubMed] [Google Scholar]
  • Kirby DA, Muse SV, Stephan W. Maintenance of pre-mRNA secondary structure by epistatic selection. Proc Natl Acad Sci U S A. 1995 Sep 26;92(20):9047–9051. [PMC free article] [PubMed] [Google Scholar]
  • Hamblin MT, Aquadro CF. Contrasting patterns of nucleotide sequence variation at the glucose dehydrogenase (Gld) locus in different populations of Drosophila melanogaster. Genetics. 1997 Apr;145(4):1053–1062. [PMC free article] [PubMed] [Google Scholar]
  • Kliman RM, Hey J. DNA sequence variation at the period locus within and among species of the Drosophila melanogaster complex. Genetics. 1993 Feb;133(2):375–387. [PMC free article] [PubMed] [Google Scholar]
  • Hamblin MT, Aquadro CF. Contrasting patterns of nucleotide sequence variation at the glucose dehydrogenase (Gld) locus in different populations of Drosophila melanogaster. Genetics. 1997 Apr;145(4):1053–1062. [PMC free article] [PubMed] [Google Scholar]
  • Kreitman M. Nucleotide polymorphism at the alcohol dehydrogenase locus of Drosophila melanogaster. Nature. 1983 Aug 4;304(5925):412–417. [PubMed] [Google Scholar]
  • Labate JA, Biermann CH, Eanes WF. Nucleotide variation at the runt locus in Drosophila melanogaster and Drosophila simulans. Mol Biol Evol. 1999 Jun;16(6):724–731. [PubMed] [Google Scholar]
  • Harada K, Kusakabe S, Yamazaki T, Mukai T. Spontaneous mutation rates in null and band-morph mutations of enzyme loci in Drosophila melanogaster. Jpn J Genet. 1993 Dec;68(6):605–616. [PubMed] [Google Scholar]
  • Hasson E, Eanes WF. Contrasting histories of three gene regions associated with In(3L)Payne of Drosophila melanogaster. Genetics. 1996 Dec;144(4):1565–1575. [PMC free article] [PubMed] [Google Scholar]
  • Leicht BG, Muse SV, Hanczyc M, Clark AG. Constraints on intron evolution in the gene encoding the myosin alkali light chain in Drosophila. Genetics. 1995 Jan;139(1):299–308. [PMC free article] [PubMed] [Google Scholar]
  • Hasson E, Wang IN, Zeng LW, Kreitman M, Eanes WF. Nucleotide variation in the triosephosphate isomerase (Tpi) locus of Drosophila melanogaster and Drosophila simulans. Mol Biol Evol. 1998 Jun;15(6):756–769. [PubMed] [Google Scholar]
  • Hey J, Kliman RM. Population genetics and phylogenetics of DNA sequence variation at multiple loci within the Drosophila melanogaster species complex. Mol Biol Evol. 1993 Jul;10(4):804–822. [PubMed] [Google Scholar]
  • Li WH, Nei M. Stable linkage disequilibrium without epistasis in subdivided populations. Theor Popul Biol. 1974 Oct;6(2):173–183. [PubMed] [Google Scholar]
  • Hey J, Wakeley J. A coalescent estimator of the population recombination rate. Genetics. 1997 Mar;145(3):833–846. [PMC free article] [PubMed] [Google Scholar]
  • Lichten M, Goldman AS. Meiotic recombination hotspots. Annu Rev Genet. 1995;29:423–444. [PubMed] [Google Scholar]
  • Hudson RR. Estimating the recombination parameter of a finite population model without selection. Genet Res. 1987 Dec;50(3):245–250. [PubMed] [Google Scholar]
  • Ludwig MZ, Kreitman M. Evolutionary dynamics of the enhancer region of even-skipped in Drosophila. Mol Biol Evol. 1995 Nov;12(6):1002–1011. [PubMed] [Google Scholar]
  • Smith JM, Haigh J. The hitch-hiking effect of a favourable gene. Genet Res. 1974 Feb;23(1):23–35. [PubMed] [Google Scholar]
  • Miyashita NT, Langley CH. Restriction map polymorphism in the forked and vermilion regions of Drosophila melanogaster. Jpn J Genet. 1994 Jun;69(3):297–305. [PubMed] [Google Scholar]
  • Hudson RR, Boos DD, Kaplan NL. A statistical test for detecting geographic subdivision. Mol Biol Evol. 1992 Jan;9(1):138–151. [PubMed] [Google Scholar]
  • Miyashita NT, Aguadé M, Langley CH. Linkage disequilibrium in the white locus region of Drosophila melanogaster. Genet Res. 1993 Oct;62(2):101–109. [PubMed] [Google Scholar]
  • Hudson RR, Slatkin M, Maddison WP. Estimation of levels of gene flow from DNA sequence data. Genetics. 1992 Oct;132(2):583–589. [PMC free article] [PubMed] [Google Scholar]
  • Moriyama EN, Powell JR. Intraspecific nuclear DNA variation in Drosophila. Mol Biol Evol. 1996 Jan;13(1):261–277. [PubMed] [Google Scholar]
  • Hudson RR, Bailey K, Skarecky D, Kwiatowski J, Ayala FJ. Evidence for positive selection in the superoxide dismutase (Sod) region of Drosophila melanogaster. Genetics. 1994 Apr;136(4):1329–1340. [PMC free article] [PubMed] [Google Scholar]
  • Nei M, Maruyama T. Letters to the editors: Lewontin-Krakauer test for neutral genes. Genetics. 1975 Jun;80(2):395–395. [PMC free article] [PubMed] [Google Scholar]
  • Hudson RR, Sáez AG, Ayala FJ. DNA variation at the Sod locus of Drosophila melanogaster: an unfolding story of natural selection. Proc Natl Acad Sci U S A. 1997 Jul 22;94(15):7725–7729. [PMC free article] [PubMed] [Google Scholar]
  • Palopoli MF, Wu CI. Rapid evolution of a coadapted gene complex: evidence from the Segregation Distorter (SD) system of meiotic drive in Drosophila melanogaster. Genetics. 1996 Aug;143(4):1675–1688. [PMC free article] [PubMed] [Google Scholar]
  • Inomata N, Shibata H, Okuyama E, Yamazaki T. Evolutionary relationships and sequence variation of alpha-amylase variants encoded by duplicated genes in the Amy locus of Drosophila melanogaster. Genetics. 1995 Sep;141(1):237–244. [PMC free article] [PubMed] [Google Scholar]
  • Richter B, Long M, Lewontin RC, Nitasaka E. Nucleotide variation and conservation at the dpp locus, a gene controlling early development in Drosophila. Genetics. 1997 Feb;145(2):311–323. [PMC free article] [PubMed] [Google Scholar]
  • Irvin SD, Wetterstrand KA, Hutter CM, Aquadro CF. Genetic variation and differentiation at microsatellite loci in Drosophila simulans. Evidence for founder effects in new world populations. Genetics. 1998 Oct;150(2):777–790. [PMC free article] [PubMed] [Google Scholar]
  • Robertson A. Letters to the editors: Remarks on the Lewontin-Krakauer test. Genetics. 1975 Jun;80(2):396–396. [PMC free article] [PubMed] [Google Scholar]
  • Rowan RG, Hunt JA. Rates of DNA change and phylogeny from the DNA sequences of the alcohol dehydrogenase gene for five closely related species of Hawaiian Drosophila. Mol Biol Evol. 1991 Jan;8(1):49–70. [PubMed] [Google Scholar]
  • Tajima F. Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics. 1989 Nov;123(3):585–595. [PMC free article] [PubMed] [Google Scholar]
  • Russo CA, Takezaki N, Nei M. Molecular phylogeny and divergence times of drosophilid species. Mol Biol Evol. 1995 May;12(3):391–404. [PubMed] [Google Scholar]
  • True JR, Mercer JM, Laurie CC. Differences in crossover frequency and distribution among three sibling species of Drosophila. Genetics. 1996 Feb;142(2):507–523. [PMC free article] [PubMed] [Google Scholar]
  • Tsaur SC, Ting CT, Wu CI. Positive selection driving the evolution of a gene of male reproduction, Acp26Aa, of Drosophila: II. Divergence versus polymorphism. Mol Biol Evol. 1998 Aug;15(8):1040–1046. [PubMed] [Google Scholar]
  • SCHULTZ J, REDFIELD H. Interchromosomal effects on crossing over in Drosophila. Cold Spring Harb Symp Quant Biol. 1951;16:175–197. [PubMed] [Google Scholar]
  • Simmons GM, Kwok W, Matulonis P, Venkatesh T. Polymorphism and divergence at the prune locus in Drosophila melanogaster and D. simulans. Mol Biol Evol. 1994 Jul;11(4):666–671. [PubMed] [Google Scholar]
  • Wall JD. A comparison of estimators of the population recombination rate. Mol Biol Evol. 2000 Jan;17(1):156–163. [PubMed] [Google Scholar]
  • Sniegowski PD, Pringle A, Hughes KA. Effects of autosomal inversions on meiotic exchange in distal and proximal regions of the X chromosome in a natural population of Drosophila melanogaster. Genet Res. 1994 Feb;63(1):57–62. [PubMed] [Google Scholar]
  • Watterson GA. On the number of segregating sites in genetical models without recombination. Theor Popul Biol. 1975 Apr;7(2):256–276. [PubMed] [Google Scholar]
  • Wayne ML, Contamine D, Kreitman M. Molecular population genetics of ref(2)P, a locus which confers viral resistance in Drosophila. Mol Biol Evol. 1996 Jan;13(1):191–199. [PubMed] [Google Scholar]
  • Stam LF, Laurie CC. Molecular dissection of a major gene effect on a quantitative trait: the level of alcohol dehydrogenase expression in Drosophila melanogaster. Genetics. 1996 Dec;144(4):1559–1564. [PMC free article] [PubMed] [Google Scholar]
  • Wesley CS, Eanes WF. Isolation and analysis of the breakpoint sequences of chromosome inversion In(3L)Payne in Drosophila melanogaster. Proc Natl Acad Sci U S A. 1994 Apr 12;91(8):3132–3136. [PMC free article] [PubMed] [Google Scholar]
  • Stephan W, Xing L, Kirby DA, Braverman JM. A test of the background selection hypothesis based on nucleotide data from Drosophila ananassae. Proc Natl Acad Sci U S A. 1998 May 12;95(10):5649–5654. [PMC free article] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

-