Skip to main content
Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Mol Cell Biol. 1996 Apr; 16(4): 1595–1603.
PMCID: PMC231145
PMID: 8657134

Activation and association of Stat3 with Src in v-Src-transformed cell lines.

Abstract

STAT proteins are a group of latent cytoplasmic transcription factors which function as signal transducers and activators of transcription. Stat1 and -2 were originally identified to function in interferon signaling, and Stat1 was also found to be activated by epidermal growth factor (EGF) and other cytokines. New members of the STAT gene family are identified. Among them, Stat3 has 52.5% amino acid sequence homology with Stat1 and is activated by platelet-derived growth factor (PDGF), colony-stimulating factor 1 (CSF-1), EGF, interleukin-6, and other cytokines. Treatment of cells with EGF activates Stat1 and Stat3, which become phosphorylated on tyrosine residues to form homo - or heterodimers and translocate into the nucleus, binding to the sis-inducible element (SIE) in the c-fos promoter. Somatic cell genetic analyses demonstrated that Jaks, a family of nontransmembrane protein tyrosine kinases, are required for the activation of Stat1 and Stat2 in interferon-treated cells. However, little is known about the activation of Stat3 by growth factors. Here we report that in all v-Src-transformed cell lines examined, Stat3 is constitutively activated to bind to DNA and the phosphorylation of tyrosine on Stat3 is enhanced by the induction of v-Src expression. We also report that Src is shown to be associated with Stat3 in vivo, as well as in vitro, and phosphorylates Stat3 in vitro. Stat3 is also activated by CSF-1, possibly through CSF-1 receptor-c Src association in NIH 3T3 cells overexpressing CSF-1 receptors. Together, the data suggest that Src is involved in activation of Stat3 in growth factor signal transduction.

Full Text

The Full Text of this article is available as a PDF (523K).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  • Akira S, Nishio Y, Inoue M, Wang XJ, Wei S, Matsusaka T, Yoshida K, Sudo T, Naruto M, Kishimoto T. Molecular cloning of APRF, a novel IFN-stimulated gene factor 3 p91-related transcription factor involved in the gp130-mediated signaling pathway. Cell. 1994 Apr 8;77(1):63–71. [PubMed] [Google Scholar]
  • Alonso G, Koegl M, Mazurenko N, Courtneidge SA. Sequence requirements for binding of Src family tyrosine kinases to activated growth factor receptors. J Biol Chem. 1995 Apr 28;270(17):9840–9848. [PubMed] [Google Scholar]
  • Bagrodia S, Taylor SJ, Shalloway D. Myristylation is required for Tyr-527 dephosphorylation and activation of pp60c-src in mitosis. Mol Cell Biol. 1993 Mar;13(3):1464–1470. [PMC free article] [PubMed] [Google Scholar]
  • Boyle WJ, van der Geer P, Hunter T. Phosphopeptide mapping and phosphoamino acid analysis by two-dimensional separation on thin-layer cellulose plates. Methods Enzymol. 1991;201:110–149. [PubMed] [Google Scholar]
  • Briscoe J, Guschin D, Müller M. Signal transduction. Just another signalling pathway. Curr Biol. 1994 Nov 1;4(11):1033–1035. [PubMed] [Google Scholar]
  • Cantley LC, Auger KR, Carpenter C, Duckworth B, Graziani A, Kapeller R, Soltoff S. Oncogenes and signal transduction. Cell. 1991 Jan 25;64(2):281–302. [PubMed] [Google Scholar]
  • Cao X, Mahendran R, Guy GR, Tan YH. Detection and characterization of cellular EGR-1 binding to its recognition site. J Biol Chem. 1993 Aug 15;268(23):16949–16957. [PubMed] [Google Scholar]
  • Courtneidge SA, Dhand R, Pilat D, Twamley GM, Waterfield MD, Roussel MF. Activation of Src family kinases by colony stimulating factor-1, and their association with its receptor. EMBO J. 1993 Mar;12(3):943–950. [PMC free article] [PubMed] [Google Scholar]
  • Darnell JE, Jr, Kerr IM, Stark GR. Jak-STAT pathways and transcriptional activation in response to IFNs and other extracellular signaling proteins. Science. 1994 Jun 3;264(5164):1415–1421. [PubMed] [Google Scholar]
  • David M, Petricoin E, 3rd, Benjamin C, Pine R, Weber MJ, Larner AC. Requirement for MAP kinase (ERK2) activity in interferon alpha- and interferon beta-stimulated gene expression through STAT proteins. Science. 1995 Sep 22;269(5231):1721–1723. [PubMed] [Google Scholar]
  • Dérijard B, Hibi M, Wu IH, Barrett T, Su B, Deng T, Karin M, Davis RJ. JNK1: a protein kinase stimulated by UV light and Ha-Ras that binds and phosphorylates the c-Jun activation domain. Cell. 1994 Mar 25;76(6):1025–1037. [PubMed] [Google Scholar]
  • Dignam JD, Lebovitz RM, Roeder RG. Accurate transcription initiation by RNA polymerase II in a soluble extract from isolated mammalian nuclei. Nucleic Acids Res. 1983 Mar 11;11(5):1475–1489. [PMC free article] [PubMed] [Google Scholar]
  • Fu XY. A transcription factor with SH2 and SH3 domains is directly activated by an interferon alpha-induced cytoplasmic protein tyrosine kinase(s). Cell. 1992 Jul 24;70(2):323–335. [PubMed] [Google Scholar]
  • Fu XY, Zhang JJ. Transcription factor p91 interacts with the epidermal growth factor receptor and mediates activation of the c-fos gene promoter. Cell. 1993 Sep 24;74(6):1135–1145. [PubMed] [Google Scholar]
  • Guan KL, Dixon JE. Eukaryotic proteins expressed in Escherichia coli: an improved thrombin cleavage and purification procedure of fusion proteins with glutathione S-transferase. Anal Biochem. 1991 Feb 1;192(2):262–267. [PubMed] [Google Scholar]
  • Hanks SK, Quinn AM, Hunter T. The protein kinase family: conserved features and deduced phylogeny of the catalytic domains. Science. 1988 Jul 1;241(4861):42–52. [PubMed] [Google Scholar]
  • Heim MH, Kerr IM, Stark GR, Darnell JE., Jr Contribution of STAT SH2 groups to specific interferon signaling by the Jak-STAT pathway. Science. 1995 Mar 3;267(5202):1347–1349. [PubMed] [Google Scholar]
  • Hou J, Schindler U, Henzel WJ, Ho TC, Brasseur M, McKnight SL. An interleukin-4-induced transcription factor: IL-4 Stat. Science. 1994 Sep 16;265(5179):1701–1706. [PubMed] [Google Scholar]
  • Kypta RM, Goldberg Y, Ulug ET, Courtneidge SA. Association between the PDGF receptor and members of the src family of tyrosine kinases. Cell. 1990 Aug 10;62(3):481–492. [PubMed] [Google Scholar]
  • Kyriakis JM, Banerjee P, Nikolakaki E, Dai T, Rubie EA, Ahmad MF, Avruch J, Woodgett JR. The stress-activated protein kinase subfamily of c-Jun kinases. Nature. 1994 May 12;369(6476):156–160. [PubMed] [Google Scholar]
  • Larner AC, David M, Feldman GM, Igarashi K, Hackett RH, Webb DS, Sweitzer SM, Petricoin EF, 3rd, Finbloom DS. Tyrosine phosphorylation of DNA binding proteins by multiple cytokines. Science. 1993 Sep 24;261(5129):1730–1733. [PubMed] [Google Scholar]
  • Migone TS, Lin JX, Cereseto A, Mulloy JC, O'Shea JJ, Franchini G, Leonard WJ. Constitutively activated Jak-STAT pathway in T cells transformed with HTLV-I. Science. 1995 Jul 7;269(5220):79–81. [PubMed] [Google Scholar]
  • Müller M, Briscoe J, Laxton C, Guschin D, Ziemiecki A, Silvennoinen O, Harpur AG, Barbieri G, Witthuhn BA, Schindler C, et al. The protein tyrosine kinase JAK1 complements defects in interferon-alpha/beta and -gamma signal transduction. Nature. 1993 Nov 11;366(6451):129–135. [PubMed] [Google Scholar]
  • Muthuswamy SK, Muller WJ. Activation of Src family kinases in Neu-induced mammary tumors correlates with their association with distinct sets of tyrosine phosphorylated proteins in vivo. Oncogene. 1995 Nov 2;11(9):1801–1810. [PubMed] [Google Scholar]
  • Pallen CJ, Tan YH, Guy GR. Protein phosphatases in cell signalling. Curr Opin Cell Biol. 1992 Dec;4(6):1000–1007. [PubMed] [Google Scholar]
  • Reynolds AB, Roesel DJ, Kanner SB, Parsons JT. Transformation-specific tyrosine phosphorylation of a novel cellular protein in chicken cells expressing oncogenic variants of the avian cellular src gene. Mol Cell Biol. 1989 Feb;9(2):629–638. [PMC free article] [PubMed] [Google Scholar]
  • Roussel MF, Cleveland JL, Shurtleff SA, Sherr CJ. Myc rescue of a mutant CSF-1 receptor impaired in mitogenic signalling. Nature. 1991 Sep 26;353(6342):361–363. [PubMed] [Google Scholar]
  • Roussel MF, Shurtleff SA, Downing JR, Sherr CJ. A point mutation at tyrosine-809 in the human colony-stimulating factor 1 receptor impairs mitogenesis without abrogating tyrosine kinase activity, association with phosphatidylinositol 3-kinase, or induction of c-fos and junB genes. Proc Natl Acad Sci U S A. 1990 Sep;87(17):6738–6742. [PMC free article] [PubMed] [Google Scholar]
  • Roussel MF, Theodoras AM, Pagano M, Sherr CJ. Rescue of defective mitogenic signaling by D-type cyclins. Proc Natl Acad Sci U S A. 1995 Jul 18;92(15):6837–6841. [PMC free article] [PubMed] [Google Scholar]
  • Ruff-Jamison S, Zhong Z, Wen Z, Chen K, Darnell JE, Jr, Cohen S. Epidermal growth factor and lipopolysaccharide activate Stat3 transcription factor in mouse liver. J Biol Chem. 1994 Sep 2;269(35):21933–21935. [PubMed] [Google Scholar]
  • Sadowski HB, Shuai K, Darnell JE, Jr, Gilman MZ. A common nuclear signal transduction pathway activated by growth factor and cytokine receptors. Science. 1993 Sep 24;261(5129):1739–1744. [PubMed] [Google Scholar]
  • Schindler C, Fu XY, Improta T, Aebersold R, Darnell JE., Jr Proteins of transcription factor ISGF-3: one gene encodes the 91-and 84-kDa ISGF-3 proteins that are activated by interferon alpha. Proc Natl Acad Sci U S A. 1992 Aug 15;89(16):7836–7839. [PMC free article] [PubMed] [Google Scholar]
  • Shuai K, Schindler C, Prezioso VR, Darnell JE., Jr Activation of transcription by IFN-gamma: tyrosine phosphorylation of a 91-kD DNA binding protein. Science. 1992 Dec 11;258(5089):1808–1812. [PubMed] [Google Scholar]
  • Shuai K, Horvath CM, Huang LH, Qureshi SA, Cowburn D, Darnell JE., Jr Interferon activation of the transcription factor Stat91 involves dimerization through SH2-phosphotyrosyl peptide interactions. Cell. 1994 Mar 11;76(5):821–828. [PubMed] [Google Scholar]
  • Silvennoinen O, Schindler C, Schlessinger J, Levy DE. Ras-independent growth factor signaling by transcription factor tyrosine phosphorylation. Science. 1993 Sep 24;261(5129):1736–1739. [PubMed] [Google Scholar]
  • Singh P, Wong SH, Hong W. Overexpression of E2F-1 in rat embryo fibroblasts leads to neoplastic transformation. EMBO J. 1994 Jul 15;13(14):3329–3338. [PMC free article] [PubMed] [Google Scholar]
  • Stahl N, Farruggella TJ, Boulton TG, Zhong Z, Darnell JE, Jr, Yancopoulos GD. Choice of STATs and other substrates specified by modular tyrosine-based motifs in cytokine receptors. Science. 1995 Mar 3;267(5202):1349–1353. [PubMed] [Google Scholar]
  • Taniguchi T. Cytokine signaling through nonreceptor protein tyrosine kinases. Science. 1995 Apr 14;268(5208):251–255. [PubMed] [Google Scholar]
  • Varticovski L, Druker B, Morrison D, Cantley L, Roberts T. The colony stimulating factor-1 receptor associates with and activates phosphatidylinositol-3 kinase. Nature. 1989 Dec 7;342(6250):699–702. [PubMed] [Google Scholar]
  • Velazquez L, Fellous M, Stark GR, Pellegrini S. A protein tyrosine kinase in the interferon alpha/beta signaling pathway. Cell. 1992 Jul 24;70(2):313–322. [PubMed] [Google Scholar]
  • van der Geer P, Hunter T. Tyrosine 706 and 807 phosphorylation site mutants in the murine colony-stimulating factor-1 receptor are unaffected in their ability to bind or phosphorylate phosphatidylinositol-3 kinase but show differential defects in their ability to induce early response gene transcription. Mol Cell Biol. 1991 Sep;11(9):4698–4709. [PMC free article] [PubMed] [Google Scholar]
  • Wagner BJ, Hayes TE, Hoban CJ, Cochran BH. The SIF binding element confers sis/PDGF inducibility onto the c-fos promoter. EMBO J. 1990 Dec;9(13):4477–4484. [PMC free article] [PubMed] [Google Scholar]
  • Watling D, Guschin D, Müller M, Silvennoinen O, Witthuhn BA, Quelle FW, Rogers NC, Schindler C, Stark GR, Ihle JN, et al. Complementation by the protein tyrosine kinase JAK2 of a mutant cell line defective in the interferon-gamma signal transduction pathway. Nature. 1993 Nov 11;366(6451):166–170. [PubMed] [Google Scholar]
  • Wen Z, Zhong Z, Darnell JE., Jr Maximal activation of transcription by Stat1 and Stat3 requires both tyrosine and serine phosphorylation. Cell. 1995 Jul 28;82(2):241–250. [PubMed] [Google Scholar]
  • Yu CL, Meyer DJ, Campbell GS, Larner AC, Carter-Su C, Schwartz J, Jove R. Enhanced DNA-binding activity of a Stat3-related protein in cells transformed by the Src oncoprotein. Science. 1995 Jul 7;269(5220):81–83. [PubMed] [Google Scholar]
  • Zhang X, Blenis J, Li HC, Schindler C, Chen-Kiang S. Requirement of serine phosphorylation for formation of STAT-promoter complexes. Science. 1995 Mar 31;267(5206):1990–1994. [PubMed] [Google Scholar]
  • Zhong Z, Wen Z, Darnell JE., Jr Stat3: a STAT family member activated by tyrosine phosphorylation in response to epidermal growth factor and interleukin-6. Science. 1994 Apr 1;264(5155):95–98. [PubMed] [Google Scholar]
  • Zhong Z, Wen Z, Darnell JE., Jr Stat3 and Stat4: members of the family of signal transducers and activators of transcription. Proc Natl Acad Sci U S A. 1994 May 24;91(11):4806–4810. [PMC free article] [PubMed] [Google Scholar]

Articles from Molecular and Cellular Biology are provided here courtesy of Taylor & Francis

-