Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2006:29:77-103.
doi: 10.1146/annurev.neuro.29.051605.112839.

Noncoding RNAs in the mammalian central nervous system

Affiliations
Review

Noncoding RNAs in the mammalian central nervous system

Xinwei Cao et al. Annu Rev Neurosci. 2006.

Abstract

The central nervous system (CNS) is arguably one of the most complex systems in the universe. To understand the CNS, scientists have investigated a variety of molecules, including proteins, lipids, and various small molecules. However, one large class of molecules, noncoding RNAs (ncRNAs), has been relatively unexplored. ncRNAs function directly as structural, catalytic, or regulatory molecules rather than serving as templates for protein synthesis. The increasing variety of ncRNAs being identified in the CNS suggests a strong connection between the biogenesis, dynamics of action, and combinatorial regulatory potential of ncRNAs and the complexity of the CNS. In this review, we give an overview of the diversity and abundance of ncRNAs before delving into specific examples that illustrate their importance in the CNS. In particular, we cover recent evidence for the roles of microRNAs, small nucleolar RNAs, retrotransposons, the NRSE small modulatory RNA, and BC1/BC200 in the CNS. Finally, we speculate why ncRNAs are well adapted to improving organism-environment interactions.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources

-