Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2011 Apr;43(4):248-57.
doi: 10.1093/abbs/gmr007. Epub 2011 Feb 16.

PGC-1 coactivators in the control of energy metabolism

Affiliations
Review

PGC-1 coactivators in the control of energy metabolism

Chang Liu et al. Acta Biochim Biophys Sin (Shanghai). 2011 Apr.

Abstract

Chronic disruption of energy balance, where energy intake exceeds expenditure, is a major risk factor for the development of metabolic syndrome. The latter is characterized by a constellation of symptoms including obesity, dyslipidemia, insulin resistance, hypertension, and non-alcoholic fatty liver disease. Altered expression of genes involved in glucose and lipid metabolism as well as mitochondrial oxidative phosphorylation has been implicated in the pathogenesis of these disorders. The peroxisome proliferator-activated receptor γ coactivator-1 (PGC-1) family of transcriptional coactivators is emerging as a hub linking nutritional and hormonal signals and energy metabolism. PGC-1α and PGC-1β are highly responsive to environmental cues and coordinate metabolic gene programs through interaction with transcription factors and chromatin-remodeling proteins. PGC-1α has been implicated in the pathogenic conditions including obesity, type 2 diabetes, neurodegeneration, and cardiomyopathy, whereas PGC-1β plays an important role in plasma lipoprotein homeostasis and serves as a hepatic target for niacin, a potent hypotriglyceridemic drug. Here, we review recent advances in the identification of physiological and pathophysiological contexts involving PGC-1 coactivators, and also discuss their implications for therapeutic development.

PubMed Disclaimer

Figures

Figure 1
Figure 1
The working model of PGC-1 coactivators PGC-1α and PGC-1β regulate diverse metabolic programs through coactivating selective transcriptional factors (TF) associated with regulatory elements of target genes. PGC-1 recruits HAT, SWI/SNF chromatin-remodeling, Sirt1 deacetylase, and mediator complexes to modulate the epigenetic status of chromatin.

Similar articles

Cited by

References

    1. Puigserver P, Wu Z, Park CW, Graves R, Wright M, Spiegelman BM. A cold-inducible coactivator of nuclear receptors linked to adaptive thermogenesis. Cell. 1998;92:829–839. - PubMed
    1. Puigserver P, Adelmant G, Wu Z, Fan M, Xu J, O'Malley B, Spiegelman BM. Activation of PPARγ coactivator-1 through transcription factor docking. Science. 1999;286:1368–1371. - PubMed
    1. Wallberg AE, Yamamura S, Malik S, Spiegelman BM, Roeder RG. Coordination of p300-mediated chromatin remodeling and TRAP/mediator function through coactivator PGC-1α. Mol Cell. 2003;12:1137–1149. - PubMed
    1. Li S, Liu C, Li N, Hao T, Han T, Hill DE, Vidal M, et al. Genome-wide coactivation analysis of PGC-1α identifies BAF60a as a regulator of hepatic lipid metabolism. Cell Metab. 2008;8:105–117. - PMC - PubMed
    1. Monsalve M, Wu Z, Adelmant G, Puigserver P, Fan M, Spiegelman BM. Direct coupling of transcription and mRNA processing through the thermogenic coactivator PGC-1. Mol Cell. 2000;6:307–316. - PubMed

Publication types

MeSH terms

Substances

-