Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2020 Jan-Feb;40(1):28-43.
doi: 10.1148/rg.2020190099. Epub 2019 Nov 29.

Quantitative CT Analysis of Diffuse Lung Disease

Affiliations
Review

Quantitative CT Analysis of Diffuse Lung Disease

Alicia Chen et al. Radiographics. 2020 Jan-Feb.

Abstract

Quantitative analysis of thin-section CT of the chest has a growing role in the clinical evaluation and management of diffuse lung diseases. This heterogeneous group includes diseases with markedly different prognoses and treatment options. Quantitative tools can assist in both accurate diagnosis and longitudinal management by improving characterization and quantification of disease and increasing the reproducibility of disease severity assessment. Furthermore, a quantitative index of disease severity may serve as a useful tool or surrogate endpoint in evaluating treatment efficacy. The authors explore the role of quantitative imaging tools in the evaluation and management of diffuse lung diseases. Lung parenchymal features can be classified with threshold, histogram, morphologic, and texture-analysis-based methods. Quantitative CT analysis has been applied in obstructive, infiltrative, and restrictive pulmonary diseases including emphysema, cystic fibrosis, asthma, idiopathic pulmonary fibrosis, hypersensitivity pneumonitis, connective tissue-related interstitial lung disease, and combined pulmonary fibrosis and emphysema. Some challenges limiting the development and practical application of current quantitative analysis tools include the quality of training data, lack of standard criteria to validate the accuracy of the results, and lack of real-world assessments of the impact on outcomes. Artifacts such as patient motion or metallic beam hardening, variation in inspiratory effort, differences in image acquisition and reconstruction techniques, or inaccurate preprocessing steps such as segmentation of anatomic structures may lead to inaccurate classification. Despite these challenges, as new techniques emerge, quantitative analysis is developing into a viable tool to supplement the traditional visual assessment of diffuse lung diseases and to provide decision support regarding diagnosis, prognosis, and longitudinal evaluation of disease. ©RSNA, 2019.

PubMed Disclaimer

Comment in

Similar articles

Cited by

-