Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1997 Apr;272(4 Pt 2):H1826-32.
doi: 10.1152/ajpheart.1997.272.4.H1826.

Memory and complex dynamics in cardiac Purkinje fibers

Affiliations

Memory and complex dynamics in cardiac Purkinje fibers

R F Gilmour Jr et al. Am J Physiol. 1997 Apr.

Abstract

The contribution of cumulative changes in action potential duration (memory) to complex cellular electrophysiological behavior was investigated in canine cardiac Purkinje fibers. Complex behavior induced during constant pacing was caused by reciprocal interactions between the time to full repolarization (TFR), where TFR = response duration + latency, and the diastolic interval (DI). The relationship between TFR and the preceding DI during complex behavior differed from that obtained using a standard restitution protocol. In particular, higher-order periodicities and chaos were produced in fibers in which the restitution curve lacked the prerequisites for such behavior. To investigate whether shifts in the restitution curve might be expected during rapid pacing, the relationship between TFR of a test response (TFR(n + 1)) and the immediately preceding response (TFR(n)) was determined. For any fixed DI(n), reduction of TFR(n) from 240 to 130 ms was accompanied by a corresponding reduction of TFR(n + 1), whereas as TFR(n) was reduced further to 120 ms, TFR(n + 1) increased. Because of the dependence of TFR(n + 1) on TFR(n) (memory) and on the preceding DI(n) (restitution), the slope of the low-dimensional relationship between TFR(n + 1) and DI(n) at a constant pacing cycle length depended on the slopes of the restitution and memory functions. These results suggest that rapid accumulation and dissipation of memory may contribute importantly to complex electrical behavior in cardiac tissue.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources

-