Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 1998 Feb;23(1):23-55.
doi: 10.1139/h98-002.

Oxidative stress, antioxidant status, and the contracting diaphragm

Affiliations
Review

Oxidative stress, antioxidant status, and the contracting diaphragm

J M Lawler et al. Can J Appl Physiol. 1998 Feb.

Abstract

Reactive oxygen species, including free radicals, are produced through a number of biochemical reactions, often as a consequence of aerobic metabolism. A system of antioxidant enzymes and scavenger substrates provides protection of membrane lipids, proteins, and DNA. An imbalance between production of reactive oxygen species and antioxidant protection results in "oxidative stress." Oxidative stress is believed to contribute to numerous pathological conditions including atherosclerosis, obstructive lung disease, aging, and fatigue of skeletal muscles including the diaphragm. Strenuous exercise, inflammation, infection, obstructive lung diseases, etc. increase exposure of the diaphragm to reactive oxygen species. Emerging data indicate that reactive oxygen species alter diaphragm contractions primarily in response to low-frequency stimulation. The response of the diaphragm is profoundly influenced by the degree of oxidative stress, fatigue state, glutathione status, and age. Exercise training results in an upregulation of antioxidant enzyme activities in the diaphragm and thus could provide additional protection against oxidative stress.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources

-