Skip to Main Content

The Use of Self: The Essence of Professional Education

Online ISBN:
9780197559680
Print ISBN:
9780190616144
Publisher:
Oxford University Press
Book

The Use of Self: The Essence of Professional Education

Published:
1 June 2011
Online ISBN:
9780197559680
Print ISBN:
9780190616144
Publisher:
Oxford University Press

Abstract

This monograph presents recent advances in neural network (NN) approaches and applications to chemical reaction dynamics. Topics covered include: (i) the development of ab initio potential-energy surfaces (PES) for complex multichannel systems using modified novelty sampling and feedforward NNs; (ii) methods for sampling the configuration space of critical importance, such as trajectory and novelty sampling methods and gradient fitting methods; (iii) parametrization of interatomic potential functions using a genetic algorithm accelerated with a NN; (iv) parametrization of analytic interatomic potential functions using NNs; (v) self-starting methods for obtaining analytic PES from ab inito electronic structure calculations using direct dynamics; (vi) development of a novel method, namely, combined function derivative approximation (CFDA) for simultaneous fitting of a PES and its corresponding force fields using feedforward neural networks; (vii) development of generalized PES using many-body expansions, NNs, and moiety energy approximations; (viii) NN methods for data analysis, reaction probabilities, and statistical error reduction in chemical reaction dynamics; (ix) accurate prediction of higher-level electronic structure energies (e.g. MP4 or higher) for large databases using NNs, lower-level (Hartree-Fock) energies, and small subsets of the higher-energy database; and finally (x) illustrative examples of NN applications to chemical reaction dynamics of increasing complexity starting from simple near equilibrium structures (vibrational state studies) to more complex non-adiabatic reactions. The monograph is prepared by an interdisciplinary group of researchers working as a team for nearly two decades at Oklahoma State University, Stillwater, OK with expertise in gas phase reaction dynamics; neural networks; various aspects of MD and Monte Carlo (MC) simulations of nanometric cutting, tribology, and material properties at nanoscale; scaling laws from atomistic to continuum; and neural networks applications to chemical reaction dynamics. It is anticipated that this emerging field of NN in chemical reaction dynamics will play an increasingly important role in MD, MC, and quantum mechanical studies in the years to come.

Contents
Close
This Feature Is Available To Subscribers Only

Sign In or Create an Account

Close

This PDF is available to Subscribers Only

View Article Abstract & Purchase Options

For full access to this pdf, sign in to an existing account, or purchase an annual subscription.

Close
-