Abstract

The virulence of parasites is expected to reflect an evolutionary tradeoff between increasing proliferation rates that enhance transmission and host mortality which curtails transmission. However, host resource availability may also limit parasites’ proliferation rate. To understand the role of resource limitation as a driver of virulence evolution, Pak et al. (2024) use a within-host model of red blood cell (RBC) invasion by Plasmodium chabaudi. They find that within-host resource consumption limits the evolution of the parasite’s proliferation rate, as the depletion of RBCs during infection results in intermediate optimal virulence. These results suggest that resource limitation, rather than host mortality, may drive the evolution of virulence.

Information Accepted manuscripts
Accepted manuscripts are PDF versions of the author’s final manuscript, as accepted for publication by the journal but prior to copyediting or typesetting. They can be cited using the author(s), article title, journal title, year of online publication, and DOI. They will be replaced by the final typeset articles, which may therefore contain changes. The DOI will remain the same throughout.
This content is only available as a PDF.
This article is published and distributed under the terms of the Oxford University Press, Standard Journals Publication Model (https://academic.oup.com/pages/standard-publication-reuse-rights)