skip to main content
research-article

Vision Tracking: A Survey of the State-of-the-Art

Published: 11 January 2020 Publication History
  • Get Citation Alerts
  • Abstract

    Vision tracking is a well-studied framework in vision computing. Developing a robust visual tracking system is challenging because of the sudden change in object motion, cluttered background, partial occlusion and camera motion. In this study, the state-of-the art visual tracking methods are reviewed and different categories are discussed. The overall visual tracking process is divided into four stages—object initialization, appearance modeling, motion estimation, and object localization. Each of these stages is briefly elaborated and related researches are discussed. A rapid growth of visual tracking algorithms is observed in last few decades. A comprehensive review is reported on different performance metrics to evaluate the efficiency of visual tracking algorithms which might help researchers to identify new avenues in this area. Various application areas of the visual tracking are also discussed at the end of the study.

    References

    [1]
    Sun Y, Meng MQH. Multiple moving objects tracking for automated visual surveillance. In: 2015 IEEE international conference on information and automation. 2015; IEEE. pp. 1617–1621.
    [2]
    Wei W, Yunxiao A. Vision-based human motion recognition: a survey. In: 2009 Second international conference on intelligent networks and intelligent systems. IEEE; 2009. pp. 386–389.
    [3]
    Zha ZJ, Wang M, Zheng YT, Yang Y, Hong R, and Chua TS Interactive video indexing with statistical active learning IEEE Trans Multimed 2012 14 1 17-27
    [4]
    Ying S, Yang Y. Study on vehicle navigation system with real-time traffic information. In: 2008 International conference on computer science and software engineering. vol. 4. IEEE; 2008. pp. 1079–1082.
    [5]
    Huang K, Petkovsek S, Poudel B, Ning T. A human-computer interface design using automatic gaze tracking. In: 2012 IEEE 11th international conference on signal processing. vol. 3. IEEE; 2012. pp. 1633–1636.
    [6]
    Alenljung B, Lindblom J, Andreasson R, Ziemke T. User experience in social human-robot interaction. In: Rapid automation: concepts, methodologies, tools, and applications. IGI Global; 2019. pp. 1468–1490.
    [7]
    Chincholkar AA, Bhoyar MSA, and Dagwar MSN Moving object tracking and detection in videos using MATLAB: a review Int J Adv Res Comput Electron 2014 1 5 2348-5523
    [8]
    Abdelkader MF, Chellappa R, Zheng Q, Chan AL. Integrated motion detection and tracking for visual surveillance. In: Fourth IEEE International Conference on Computer Vision Systems (ICVS’06). IEEE; 2006. p. 28.
    [9]
    Courtney JD Automatic video indexing via object motion analysis Pattern Recogn 1997 30 4 607-625
    [10]
    Chae KH, Moon YS, Ko NY. Visual tracking of objects for unmanned surface vehicle navigation. In: 2016 16th International Conference on Control, Automation and Systems (ICCAS). IEEE; 2016. pp. 335–337.
    [11]
    Phung MD, Tran QV, Hara K, Inagaki H, Abe M. Easy-setup eye movement recording system for human-computer interaction. In: 2008 IEEE international conference on research, innovation and vision for the future in computing and communication technologies. 2008; IEEE. pp. 292–297.
    [12]
    Kavya R Feature extraction technique for robust and fast visual tracking: a typical review Int J Emerg Eng Res Technol. 2015 3 1 98-104
    [13]
    Kang B, Liang D, and Yang Z Robust visual tracking via global context regularized locality-constrained linear coding Optik 2019 183 232-240
    [14]
    Yilmaz A, Javed O, and Shah M Object tracking: a survey Acm Comput Surv (CSUR). 2006 38 4 13
    [15]
    Jalal, A. S., & Singh, V. (2012). The state-of-the-art in visual object tracking. Informatica, 36(3).
    [16]
    Li X, Hu W, Shen C, Zhang Z, Dick A, and Hengel AVD A survey of appearance models in visual object tracking ACM Trans Intell Syst Technol (TIST) 2013 4 4 58
    [17]
    Anuradha K, Anand V, and Raajan NR Identification of human actor in various scenarios by applying background modeling Multimed Tools Appl. 2019
    [18]
    Sghaier S, Farhat W, and Souani C Novel technique for 3D face recognition using anthropometric methodology Int J Ambient Comput Intell (IJACI) 2018 9 1 60-77
    [19]
    Zhang Y, Xu X, Liu X. Robust and high performance face detector. arXiv preprint arXiv:1901.02350. 2019.
    [20]
    Surekha B, Nazare KJ, Raju SV, Dey N. Attendance recording system using partial face recognition algorithm. In: Intelligent techniques in signal processing for multimedia security. Springer, Cham; 2017. pp. 293–319.
    [21]
    Chaki J, Dey N, Shi F, and Sherratt RS Pattern mining approaches used in sensor-based biometric recognition: a review IEEE Sens J. 2019 19 10 3569-3580
    [22]
    Dey N and Mukherjee A Embedded systems and robotics with open source tools 2018 USA CRC Press
    [23]
    Shell HSM, Arora V, Dutta A, Behera L. Face feature tracking with automatic initialization and failure recovery. In: 2010 IEEE conference on cybernetics and intelligent systems. IEEE; 2010. pp. 96–101.
    [24]
    Schmidt J. Automatic initialization for body tracking using appearance to learn a model for tracking human upper body motions. 2008.
    [25]
    Fan L, Wang Z, Cail B, Tao C, Zhang Z, Wang Y et al. A survey on multiple object tracking algorithm. In: 2016 IEEE international conference on information and automation (ICIA). IEEE; 2016. pp. 1855–1862.
    [26]
    Liu S and Feng Y Real-time fast moving object tracking in severely degraded videos captured by unmanned aerial vehicle Int J Adv Rob Syst 2018 15 1 1729881418759108
    [27]
    Lu J, Li H. The Importance of Feature Representation for Visual Tracking Systems with Discriminative Methods. In: 2015 7th International conference on intelligent human-machine systems and cybernetics. vol. 2. IEEE; 2015. pp. 190–193.
    [28]
    Saleemi I, Hartung L, Shah M. Scene understanding by statistical modeling of motion patterns. In: 2010 IEEE computer society conference on computer vision and pattern recognition. IEEE; 2010. pp. 2069–2076.
    [29]
    Zhang K, Liu Q, Yang J, and Yang MH Visual tracking via Boolean map representations Pattern Recogn 2018 81 147-160
    [30]
    Ernst D, Marée R, Wehenkel L. Reinforcement learning with raw image pixels as input state. In: Advances in machine vision, image processing, and pattern analysis. Springer, Berlin; 2006. pp. 446–454.
    [31]
    Sahu DK, Jawahar CV. Unsupervised feature learning for optical character recognition. In: 2015 13th International conference on document analysis and recognition (ICDAR). IEEE; 2015. pp. 1041–1045.
    [32]
    Silveira G, Malis E. Real-time visual tracking under arbitrary illumination changes. In: 2007 IEEE conference on computer vision and pattern recognition. IEEE; 2007. pp. 1–6.
    [33]
    Lucas BD, Kanade T. An iterative image registration technique with an application to stereo vision. 1981.
    [34]
    Ho J, Lee KC, Yang MH, Kriegman D. Visual tracking using learned linear subspaces. In: CVPR (1). 2004. pp. 782–789.
    [35]
    Li X, Hu W, Zhang Z, Zhang X, Luo G. Robust visual tracking based on incremental tensor subspace learning. In: 2007 IEEE 11th international conference on computer vision. IEEE; 2007. pp. 1–8.
    [36]
    Wen J, Li X, Gao X, Tao D. Incremental learning of weighted tensor subspace for visual tracking. In: 2009 IEEE international conference on systems, man and cybernetics. IEEE; 2009. pp. 3688–3693.
    [37]
    Hu W, Li X, Zhang X, Shi X, Maybank S, and Zhang Z Incremental tensor subspace learning and its applications to foreground segmentation and tracking Int J Comput Vis 2011 91 3 303-327
    [38]
    Yang S, Xie Y, Li P, Wen H, Luo H, and He Z Visual object tracking robust to illumination variation based on hyperline clustering Information 2019 10 1 26
    [39]
    Dey N Uneven illumination correction of digital images: a survey of the state-of-the-art Optik. 2019 183 483-495
    [40]
    Wang T, Gu IY, Shi P. Object tracking using incremental 2D-PCA learning and ML estimation. In: 2007 IEEE international conference on acoustics, speech and signal processing-ICASSP’07. vol. 1. IEEE; 2007. pp. I–933.
    [41]
    Li X, Hu W, Zhang Z, Zhang X, Zhu M, Cheng J. Visual tracking via incremental log-euclideanriemannian subspace learning. In: 2008 IEEE conference on computer vision and pattern recognition. IEEE; 2008. pp. 1–8.
    [42]
    Wang H, Suter D, Schindler K, and Shen C Adaptive object tracking based on an effective appearance filter IEEE Trans Pattern Anal Mach Intell 2007 29 9 1661-1667
    [43]
    Allili MS, Ziou D. Object of interest segmentation and tracking by using feature selection and active contours. In: 2007 IEEE conference on computer vision and pattern recognition. IEEE; 2007. pp. 1–8.
    [44]
    Akpinar S, Alpaslan FN. Video action recognition using an optical flow based representation. In: Proceedings of the international conference on image processing, computer vision, and pattern recognition (IPCV) (p. 1). The Steering Committee of the World Congress in Computer Science, Computer Engineering and Applied Computing (WorldComp). 2014.
    [45]
    Horn BK and Schunck BG Determining optical flow Artif Intell 1981 17 1–3 185-203
    [46]
    Barron JL, Fleet DJ, and Beauchemin SS Performance of optical flow techniques Int J Comput Vis 1994 12 1 43-77
    [47]
    Uras S, Girosi F, Verri A, and Torre V A computational approach to motion perception Biol Cybern 1988 60 2 79-87
    [48]
    Camus T Real-time quantized optical flow Real-Time Imaging 1997 3 2 71-86
    [49]
    Proesmans M, Van Gool L, Pauwels E, Oosterlinck A. Determination of optical flow and its discontinuities using non-linear diffusion. In: European Conference on Computer Vision. Springer, Berlin; 1994. pp. 294–304.
    [50]
    Fuh CS, Maragos P. Region-based optical flow estimation. In: Proceedings CVPR’89: IEEE computer society conference on computer vision and pattern recognition. IEEE; 1989. pp. 130–135.
    [51]
    O’Donovan P. Optical flow: techniques and applications. Int J Comput Vis. 2005;1–26.
    [52]
    Anandan P A computational framework and an algorithm for the measurement of visual motion Int J Comput Vis 1989 2 3 283-310
    [53]
    Singh A. An estimation-theoretic framework for image-flow computation. In: Proceedings third international conference on computer vision. IEEE; 1990. pp. 168–177.
    [54]
    Li Y, Huttenlocher DP. Learning for optical flow using stochastic optimization. In: European conference on computer vision. Springer, Berlin; 2008. pp. 379–391.
    [55]
    Barniv Y. Velocity filtering applied to optical flow calculations. 1990.
    [56]
    Argyriou V. Asymmetric bilateral phase correlation for optical flow estimation in the frequency domain. arXiv preprint arXiv:1811.00327. 2018.
    [57]
    Buxton BF and Buxton H Computation of optic flow from the motion of edge features in image sequences Image Vis Comput 1984 2 2 59-75
    [58]
    Fleet DJ and Jepson AD Computation of component image velocity from local phase information Int J Comput Vis 1990 5 1 77-104
    [59]
    Lee JY, Yu W. Visual tracking by partition-based histogram backprojection and maximum support criteria. In:  2011 IEEE International Conference on Robotics and Biomimetics. IEEE; 2011. pp. 2860–2865.
    [60]
    Zhi-Qiang H, Xiang L, Wang-Sheng Y, Wu L, An-Qi H. Mean-shift tracking algorithm with improved background-weighted histogram. In: 2014 Fifth international conference on intelligent systems design and engineering applications. IEEE; 2014. pp. 597–602.
    [61]
    Birchfield S. Elliptical head tracking using intensity gradients and color histograms. In: Proceedings. 1998 IEEE Computer Society conference on computer vision and pattern recognition (Cat. No. 98CB36231). IEEE; 1998. pp. 232–237.
    [62]
    Comaniciu D, Ramesh V, Meer P. Real-time tracking of non-rigid objects using mean shift. In: Proceedings IEEE conference on computer vision and pattern recognition. CVPR 2000 (Cat. No. PR00662). vol. 2. IEEE; 2000. pp. 142–149.
    [63]
    Viola P and Jones M Rapid object detection using a boosted cascade of simple features CVPR 2001 1 1 511-518
    [64]
    Porikli F. Integral histogram: a fast way to extract histograms in cartesian spaces. In: 2005 IEEE computer society conference on computer vision and pattern recognition (CVPR’05). Vol. 1. IEEE; 2005.  pp. 829–836.
    [65]
    Parameswaran V, Ramesh V, Zoghlami I. Tunable kernels for tracking. In: 2006 IEEE computer society conference on computer vision and pattern recognition (CVPR’06). Vol. 2. IEEE; 2006. pp. 2179–2186.
    [66]
    Fan Z, Yang M, Wu Y, Hua G, Yu T. Efficient optimal kernel placement for reliable visual tracking. In: 2006 IEEE computer society conference on computer vision and pattern recognition (CVPR’06). Vol. 1. IEEE; 2006. pp. 658–665.
    [67]
    Nejhum SS, Ho J, Yang MH. Visual tracking with histograms and articulating blocks. In: 2008 IEEE conference on computer vision and pattern recognition. IEEE; 2008. pp. 1–8.
    [68]
    Birchfield ST, Rangarajan S. Spatiograms versus histograms for region-based tracking. In: 2005 IEEE computer society conference on computer vision and pattern recognition (CVPR’05). Vol. 2. IEEE; 2005. pp. 1158–1163.
    [69]
    Zhao A. Robust histogram-based object tracking in image sequences. In: 9th Biennial conference of the Australian pattern recognition society on digital image computing techniques and applications (DICTA 2007), IEEE; 2007. pp. 45–52.
    [70]
    Djouadi A, Snorrason O, and Garber FD The quality of training sample estimates of the bhattacharyya coefficient IEEE Trans Pattern Anal Mach Intell 1990 12 1 92-97
    [71]
    Kailath T The divergence and Bhattacharyya distance measures in signal selection IEEE Trans Commun Technol 1967 15 1 52-60
    [72]
    Aherne FJ, Thacker NA, and Rockett PI The Bhattacharyya metric as an absolute similarity measure for frequency coded data Kybernetika 1998 34 4 363-368
    [73]
    Wu Y, Wang J, Lu H. Real-time visual tracking via incremental covariance model update on Log-Euclidean Riemannian manifold. In: 2009 Chinese conference on pattern recognition. IEEE; pp. 1–5.
    [74]
    Tuzel O, Porikli F, Meer P. Region covariance: a fast descriptor for detection and classification. In: European conference on computer vision. Springer, Berlin; 2006. pp. 589–600.
    [75]
    Porikli F, Tuzel O, Meer P. Covariance tracking using model update based on lie algebra. In: 2006 IEEE computer society conference on computer vision and pattern recognition (CVPR’06). Vol. 1. IEEE; 2006. pp. 728–735.
    [76]
    Duflot LA, Reisenhofer R, Tamadazte B, Andreff N, Krupa A. Wavelet and shearlet-based image representations for visual servoing. Int J Robot Res. 2018; 0278364918769739.
    [77]
    Krueger V, Sommer G. Efficient head pose estimation with Gabor wavelet networks. In: BMVC. pp. 1–10.
    [78]
    Krüger V, Sommer G. Gabor wavelet networks for object representation. In: Multi-image analysis. Springer, Berlin; 2001. pp. 115–128.
    [79]
    Feris RS, Krueger V, and Cesar RM Jr A wavelet subspace method for real-time face tracking Real-Time Imaging 2004 10 6 339-350
    [80]
    He C, Zheng YF, and Ahalt SC Object tracking using the Gabor wavelet transform and the golden section algorithm IEEE Trans Multimed 2002 4 4 528-538
    [81]
    Paragios N and Deriche R Geodesic active contours and level sets for the detection and tracking of moving objects IEEE Trans Pattern Anal Mach Intell 2000 22 3 266-280
    [82]
    Cremers D Dynamical statistical shape priors for level set-based tracking IEEE Trans Pattern Anal Mach Intell 2006 28 8 1262-1273
    [83]
    Allili MS, Ziou D. Object of interest segmentation and tracking by using feature selection and active contours. In: 2007 IEEE conference on computer vision and pattern recognition. IEEE; 2007. pp. 1–8.
    [84]
    Vaswani N, Rathi Y, Yezzi A, and Tannenbaum A Pf-mt with an interpolation effective basis for tracking local contour deformations IEEE Trans. Image Process 2008 19 4 841-857
    [85]
    Sun X, Yao H, Zhang S. A novel supervised level set method for non-rigid object tracking. In: CVPR 2011. IEEE; 2011. pp. 3393–3400.
    [86]
    Musavi SHA, Chowdhry BS, Bhatti J. Object tracking based on active contour modeling. In: 2014 4th International conference on wireless communications, vehicular technology, information theory and aerospace and electronic systems (VITAE). IEEE; 2014. pp. 1–5.
    [87]
    Hu W, Zhou X, Li W, Luo W, Zhang X, and Maybank S Active contour-based visual tracking by integrating colors, shapes, and motions IEEE Trans Image Process 2013 22 5 1778-1792
    [88]
    Kass M, Witkin A, and Terzopoulos D Snakes: active contour models Int J Comput Vis 1988 1 4 321-331
    [89]
    Caselles V, Kimmel R, and Sapiro G Geodesic active contours Int J Comput Vis 1997 22 1 61-79
    [90]
    Hore S, Chakraborty S, Chatterjee S, Dey N, Ashour AS, Van Chung L, and Le DN An integrated interactive technique for image segmentation using stack based seeded region growing and thresholding Int J Electr Comput Eng. 2016 6 6 2088-8708
    [91]
    Ashour AS, Samanta S, Dey N, Kausar N, Abdessalemkaraa WB, and Hassanien AE Computed tomography image enhancement using cuckoo search: a log transform based approach J Signal Inf Process 2015 6 03 244
    [92]
    Araki T, Ikeda N, Dey N, Acharjee S, Molinari F, Saba L, et al. Shape-based approach for coronary calcium lesion volume measurement on intravascular ultrasound imaging and its association with carotid intima-media thickness J Ultrasound Med 2015 34 3 469-482
    [93]
    Tuan TM, Fujita H, Dey N, Ashour AS, Ngoc VTN, and Chu DT Dental diagnosis from X-ray images: an expert system based on fuzzy computing Biomed Signal Process Control 2018 39 64-73
    [94]
    Samantaa S, Dey N, Das P, Acharjee S, Chaudhuri SS. Multilevel threshold based gray scale image segmentation using cuckoo search. arXiv preprint arXiv:1307.0277. 2013.
    [95]
    Rajinikanth V, Dey N, Satapathy SC, and Ashour AS An approach to examine magnetic resonance angiography based on Tsallis entropy and deformable snake model Futur Gener Comput Syst 2018 85 160-172
    [96]
    Kumar R, Talukdar FA, Dey N, Ashour AS, Santhi V, Balas VE, Shi F. Histogram thresholding in image segmentation: a joint level set method and lattice boltzmann method based approach. In: Information technology and intelligent transportation systems. Springer, Cham; 2017. pp. 529–539.
    [97]
    Srikham M. Active contours segmentation with edge based and local region based. In: Proceedings of the 21st international conference on pattern recognition (ICPR2012). IEEE; 2012. pp. 1989–1992.
    [98]
    Chan TF and Vese LA Active contours without edges IEEE Trans Image Process 2001 10 2 266-277
    [99]
    Feng H, Castanon DA, Karl WC. A curve evolution approach for image segmentation using adaptive flows. In: Proceedings eighth IEEE international conference on computer vision. ICCV 2001. Vol. 2. IEEE; 2001. pp. 494–499.
    [100]
    Tsai A, Yezzi A, Willsky AS. Curve evolution implementation of the Mumford-Shah functional for image segmentation, denoising, interpolation, and magnification. 2001.
    [101]
    Osher S and Sethian JA Fronts propagating with curvature-dependent speed: algorithms based on Hamilton–Jacobi formulations J Comput Phys 1988 79 1 12-49
    [102]
    Zhu SC and Yuille A Region competition: unifying snakes, region growing, and Bayes/MDL for multiband image segmentation IEEE Trans Pattern Anal Mach Intell 1996 9 884-900
    [103]
    Yilmaz A, Li X, Shah M. Object contour tracking using level sets. In: Asian conference on computer vision. 2004.
    [104]
    Wang F. Particle filters for visual tracking. In: International conference on computer science and information engineering. Springer, Berlin; 2011. pp. 107–112.
    [105]
    Varas D, Marques F. Region-based particle filter for video object segmentation. In:  Proceedings of the IEEE conference on computer vision and pattern recognition. pp. 3470–3477.
    [106]
    Li H, Wang Y. Object of interest tracking based on visual saliency and feature points matching. 2015.
    [107]
    Chantara W, Mun JH, Shin DW, and Ho YS Object tracking using adaptive template matching IEIE Trans Smart Process Comput 2015 4 1 1-9
    [108]
    Baker S and Matthews I Lucas-kanade 20 years on: a unifying framework Int J Comput Vis 2004 56 3 221-255
    [109]
    Benhimane S and Malis E Homography-based 2d visual tracking and servoing Int J Robot Res 2007 26 7 661-676
    [110]
    Kwon J, Lee HS, Park FC, and Lee KM A geometric particle filter for template-based visual tracking IEEE Trans Pattern Anal Mach Intell 2014 36 4 625-643
    [111]
    Lin Z, Davis LS, Doermann D, DeMenthon D. Hierarchical part-template matching for human detection and segmentation. In: 2007 IEEE 11th international conference on computer vision. IEEE; 2007. pp. 1–8.
    [112]
    Ren X, Malik J. Tracking as repeated figure/ground segmentation. In: CVPR. Vol. 1. 2007. p. 7.
    [113]
    Chuang YY, Agarwala A, Curless B, Salesin DH, Szeliski R. Video matting of complex scenes. In: ACM transactions on graphics (ToG). Vol. 21, No. 3. ACM; 2002. pp. 243–248.
    [114]
    Wang J, Bhat P, Colburn RA, Agrawala M, Cohen MF. Interactive video cutout. In: ACM transactions on graphics (ToG). Vol. 24, No. 3. ACM; pp. 585–594.
    [115]
    Li Y, Sun J, Tang CK, and Shum HY Lazy snapping ACM Trans Graph (ToG) 2004 23 3 303-308
    [116]
    Rother C, Kolmogorov V, and Blake A Interactive foreground extraction using iterated graph cuts ACM Trans Graph 2004 23 3
    [117]
    Lu L, Hager GD. A nonparametric treatment for location/segmentation based visual tracking. In: 2007 IEEE conference on computer vision and pattern recognition. IEEE; pp. 1–8.
    [118]
    Levinshtein A, Stere A, Kutulakos KN, Fleet DJ, Dickinson SJ, and Siddiqi K Turbopixels: fast superpixels using geometric flows IEEE Trans Pattern Anal Mach Intell 2009 31 12 2290-2297
    [119]
    Achanta R, Shaji A, Smith K, Lucchi A, Fua P, and Süsstrunk S SLIC superpixels compared to state-of-the-art superpixel methods IEEE Trans Pattern Anal Mach Intell. 2012 34 11 2274-2282
    [120]
    Hu J, Fan XP, Liu S, and Huang L Robust target tracking algorithm based on superpixel visual attention mechanism: robust target tracking algorithm Int J Ambient Comput Intell (IJACI) 2019 10 2 1-17
    [121]
    Wang S, Lu H, Yang F, Yang MH. Superpixel tracking. In: 2011 International conference on computer vision. IEEE; 2011. pp. 1323–1330.
    [122]
    Dey N, Ashour AS, Hassanien AE. Feature detectors and descriptors generations with numerous images and video applications: a recap. In: Feature detectors and motion detection in video processing. IGI Global; 2017. pp. 36–65.
    [123]
    Hore S, Bhattacharya T, Dey N, Hassanien AE, Banerjee A, Chaudhuri SB. A real time dactylology based feature extractrion for selective image encryption and artificial neural network. In: Image feature detectors and descriptors. Springer, Cham; 2016. pp. 203–226.
    [124]
    Tharwat A, Gaber T, Awad YM, Dey N, Hassanien AE. Plants identification using feature fusion technique and bagging classifier. In: The 1st international conference on advanced intelligent system and informatics (AISI2015), November 28–30, 2015, Beni Suef, Egypt. Springer, Cham; 2016. pp. 461–471.
    [125]
    Lowe DG Distinctive image features from scale-invariant keypoints Int J Comput Vis 2004 60 2 91-110
    [126]
    Wang Z, Xiao H, He W, Wen F, Yuan K. Real-time SIFT-based object recognition system. In: 2013 IEEE international conference on mechatronics and automation. IEEE; 2013; pp. 1361–1366.
    [127]
    Park C, Jung S. SIFT-based object recognition for tracking in infrared imaging system. In: 2009 34th International conference on infrared, millimeter, and terahertz waves; IEEE; 2009. pp. 1–2.
    [128]
    Mirunalini P, Jaisakthi SM, Sujana R. Tracking of object in occluded and non-occluded environment using SIFT and Kalman filter. In: TENCON 2017-2017 IEEE Region 10 Conference. IEEE; 2017. pp. 1290–1295.
    [129]
    Li Q, Li R, Ji K, Dai W. Kalman filter and its application. In: 2015 8th International Conference on Intelligent Networks and Intelligent Systems (ICINIS). IEEE; 2015. pp. 74–77.
    [130]
    Cane T, Ferryman J. Saliency-based detection for maritime object tracking. In: Proceedings of the IEEE conference on computer vision and pattern recognition workshops. 2016. pp. 18–25.
    [131]
    Borji A, Cheng MM, Hou Q, Jiang H, Li J. Salient object detection: a survey. arXiv preprint arXiv:1411.5878. 2014.
    [132]
    Itti L, Koch C, and Niebur E A model of saliency-based visual attention for rapid scene analysis IEEE Trans Pattern Anal Mach Intell 1998 11 1254-1259
    [133]
    Liu T, Yuan Z, Sun J, Wang J, Zheng N, Tang X, and Shum HY Learning to detect a salient object IEEE Trans Pattern Anal Mach Intell 2011 33 2 353-367
    [134]
    Zhang G, Yuan Z, Zheng N, Sheng X, Liu T. Visual saliency based object tracking. In: Asian conference on computer vision. 2009; Springer, Berlin. pp. 193–203.
    [135]
    Taycher L, Shakhnarovich G, Demirdjian D, Darrell T. Conditional random people: tracking humans with crfs and grid filters (No. MIT-CSAIL-TR-2005-079). Massachusetts Inst of Tech Cambridge Computer Science and Artificial Intelligence Lab. 2005.
    [136]
    Jeong J, Yoon TS, and Park JB Mean shift tracker combined with online learning-based detector and Kalman filtering for real-time tracking Expert Syst Appl 2017 79 194-206
    [137]
    Xu L, Zeng L, Duan H, and Sowah NL Saliency detection in complex scenes EURASIP J Image Video Process 2014 2014 1 31
    [138]
    Liu Q, Zhao X, and Hou Z Survey of single-target visual tracking methods based on online learning IET Comput Vis 2014 8 5 419-428
    [139]
    Bacivarov I, Ionita M, and Corcoran P Statistical models of appearance for eye tracking and eye-blink detection and measurement IEEE Trans Consum Electron 2008 54 3 1312-1320
    [140]
    Dou J, Qin Q, and Tu Z Robust visual tracking based on generative and discriminative model collaboration Multimed Tools Appl 2017 76 14 15839-15866
    [141]
    Kawamoto K, Yonekawa T, Okamoto K. Visual vehicle tracking based on an appearance generative model. In: The 6th international conference on soft computing and intelligent systems, and the 13th international symposium on advanced intelligence systems. IEEE; 2012. pp. 711–714.
    [142]
    Chakraborty B, Bhattacharyya S, and Chakraborty S Generative model based video shot boundary detection for automated surveillance Int J Ambient Comput Intell (IJACI) 2018 9 4 69-95
    [143]
    Remya KV, Vipin Krishnan CV. Survey of generative and discriminative appearance models in visual object tracking. Int J Adv Res Ideas Innov Technol. 2018;4(1). www.IJARIIT.com.
    [144]
    Jepson AD, Fleet DJ, and El-Maraghi TF Robust online appearance models for visual tracking IEEE Trans Pattern Anal Mach Intell 2003 25 10 1296-1311
    [145]
    Zhou SK, Chellappa R, and Moghaddam B Visual tracking and recognition using appearance-adaptive models in particle filters IEEE Trans Image Process 2004 13 11 1491-1506
    [146]
    Gao M, Shen J, and Jiang J Visual tracking using improved flower pollination algorithm Optik 2018 156 522-529
    [147]
    Yang H, Shao L, Zheng F, Wang L, and Song Z Recent advances and trends in visual tracking: a review Neurocomputing 2011 74 18 3823-3831
    [148]
    Lee KC, Ho J, Yang MH, Kriegman D. Video-based face recognition using probabilistic appearance manifolds. In: IEEE computer society conference on computer vision and pattern recognition. Vol. 1. IEEE Computer Society; 1999. pp. I–313.
    [149]
    Ross DA, Lim J, Lin RS, and Yang MH Incremental learning for robust visual tracking Int J Comput Vision 2008 77 1–3 125-141
    [150]
    Wen J, Li X, Gao X, Tao D. Incremental learning of weighted tensor subspace for visual tracking. In: 2009 IEEE international conference on systems, man and cybernetics. IEEE; 2009. pp. 3688–3693.
    [151]
    Funt BV, Ciurea F, and McCann JJ Retinex in matlab tm J Electron Imaging 2004 13 1 48-58
    [152]
    Ju MH, Kang HB. Illumination invariant face tracking and recognition. 2008.
    [153]
    Jia X, Lu H, Yang MH. Visual tracking via adaptive structural local sparse appearance model. In: 2012 IEEE Conference on computer vision and pattern recognition. IEEE. 2012. pp. 1822–1829.
    [154]
    Dou Jianfang, Qin Qin, and Tu Zimei Robust visual tracking based on generative and discriminative model collaboration Multimed Tools Appl. 2016
    [155]
    Zhang K, Zhang L, Yang MH. Real-time compressive tracking. In: European conference on computer vision. Springer, Berlin; 2012. pp. 864–877.
    [156]
    Zhou T, Liu F, Bhaskar H, and Yang J Robust visual tracking via online discriminative and low-rank dictionary learning IEEE Trans Cybern 2018 48 9 2643-2655
    [157]
    Fan H, Xiang J, Li G, Ni F. Robust visual tracking via deep discriminative model. In: 2017 IEEE international conference on acoustics, speech and signal processing (ICASSP). IEEE; 2017. pp. 1927–1931.
    [158]
    Babenko B, Yang MH, and Belongie S Robust object tracking with online multiple instance learning IEEE Trans Pattern Anal Mach Intell 2011 33 8 1619-1632
    [159]
    Hare S, Saffari A, Struck PHT. Structured output tracking with kernels. In: IEEE international conference on computer vision. IEEE; 2012. pp. 263–270.
    [160]
    Avidan S. Support vector tracking. In: Proceedings of the 2001 IEEE computer society conference on computer vision and pattern recognition. CVPR 2001. Vol. 1. IEEE; 2001. pp. I–I.
    [161]
    Grabner H, Leistner C, Bischof H. Semi-supervised on-line boosting for robust tracking. In: European conference on computer vision. Springer, Berlin; 2008. pp. 234-247.
    [162]
    Saffari A, Leistner C, Santner J, Godec M, Bischof H. On-line random forests. In: 2009 IEEE 12th international conference on computer vision workshops, ICCV workshops. IEEE; 2009. pp. 1393–1400.
    [163]
    Henriques JF, Caseiro R, Martins P, Batista J. Exploiting the circulant structure of tracking-by-detection with kernels. In: European conference on computer vision. Springer, Berlin; 2012. pp. 702–715.
    [164]
    Li X, Liu Q, He Z, Wang H, Zhang C, and Chen WS A multi-view model for visual tracking via correlation filters Knowl-Based Syst 2016 113 88-99
    [165]
    Bolme DS, Beveridge JR, Draper BA, Lui YM. Visual object tracking using adaptive correlation filters. In: 2010 IEEE computer society conference on computer vision and pattern recognition. IEEE; 2010. pp. 2544–2550.
    [166]
    Danelljan M, Häger G, Khan F, Felsberg M. Accurate scale estimation for robust visual tracking. In: British machine vision conference, Nottingham, September 1–5, 2014. BMVA Press.
    [167]
    Danelljan M, Shahbaz Khan F, Felsberg M, Van de Weijer J. Adaptive color attributes for real-time visual tracking. In: Proceedings of the IEEE conference on computer vision and pattern recognition. 2014. pp. 1090–1097.
    [168]
    Li Y, Zhu J. A scale adaptive kernel correlation filter tracker with feature integration. In: European conference on computer vision. Springer, Cham; 2014. pp. 254–265.
    [169]
    Danelljan M, Bhat G, Gladh S, Khan FS, and Felsberg M Deep motion and appearance cues for visual tracking Pattern Recogn Lett. 2019 124 74-81
    [170]
    Danelljan M, Häger G, Khan FS, and Felsberg M Discriminative scale space tracking IEEE Trans Pattern Anal Mach Intell 2017 39 8 1561-1575
    [171]
    Duffner S and Garcia C Using discriminative motion context for online visual object tracking IEEE Trans Circuits Syst Video Technol 2016 26 12 2215-2225
    [172]
    Ulusoy I, Bishop CM. Generative versus discriminative methods for object recognition. In: 2005 IEEE computer society conference on computer vision and pattern recognition (CVPR’05). Vol. 2. IEEE; 2005. pp. 258–265.
    [173]
    McCallum A, Pal C, Druck G, Wang X. Multi-conditional learning: generative/discriminative training for clustering and classification. In: AAAI. 2006. pp. 433–439.
    [174]
    Kelm BM, Pal C, McCallum A. Combining generative and discriminative methods for pixel classification with multi-conditional learning. In: 18th International conference on pattern recognition (ICPR’06). Vol. 2. IEEE; 2006. pp. 828–832.
    [175]
    Blake A, Rother C, Brown M, Perez P, Torr P. Interactive image segmentation using an adaptive GMMRF model. In: European conference on computer vision. Springer, Berlin. 2004. pp. 428–441.
    [176]
    Acharjee S, Dey N, Biswas D, Das P, Chaudhuri SS. A novel Block Matching Algorithmic Approach with smaller block size for motion vector estimation in video compression. In:  2012 12th International conference on intelligent systems design and applications (ISDA). IEEE; 2012. pp. 668–672.
    [177]
    Acharjee S, Biswas D, Dey N, Maji P, Chaudhuri SS. An efficient motion estimation algorithm using division mechanism of low and high motion zone. In: 2013 International mutli-conference on automation, computing, communication, control and compressed sensing (iMac4s). IEEE; 2013. pp. 169–172.
    [178]
    Acharjee S, Ray R, Chakraborty S, Nath S, Dey N. Watermarking in motion vector for security enhancement of medical videos. In: 2014 International conference on control, instrumentation, communication and computational technologies (ICCICCT). IEEE; 2014. pp. 532–537.
    [179]
    Acharjee S, Chakraborty S, Karaa WBA, Azar AT, and Dey N Performance evaluation of different cost functions in motion vector estimation Int J Service Sci Manag Eng Technol (IJSSMET). 2014 5 1 45-65
    [180]
    Acharjee S, Chakraborty S, Samanta S, Azar AT, Hassanien AE, Dey N. Highly secured multilayered motion vector watermarking. In: International conference on advanced machine learning technologies and applications. Springer, Cham; 2014. pp. 121–134.
    [181]
    Acharjee S, Pal G, Redha T, Chakraborty S, Chaudhuri SS, Dey N. Motion vector estimation using parallel processing. In: International Conference on Circuits, Communication, Control and Computing. IEEE; 2014. pp. 231–236.
    [182]
    Rawat P and Singhai J Review of motion estimation and video stabilization techniques for hand held mobile video Sig Image Proc Int J (SIPIJ). 2011 2 2 159-168
    [183]
    Irani M, Anandan P. About direct methods. In: International workshop on vision algorithms. Springer, Berlin; 1999. pp. 267–277.
    [184]
    Torr PH, Zisserman A. Feature based methods for structure and motion estimation. In: International workshop on vision algorithms. Springer, Berlin; 1999. pp. 278–294.
    [185]
    Fiaz M, Mahmood A, Jung SK. Tracking noisy targets: a review of recent object tracking approaches. arXiv preprint arXiv:1802.03098. 2018.
    [186]
    Kristan M, Matas J, Leonardis A, Felsberg M, Cehovin L, Fernandez G, et al. The visual object tracking vot2015 challenge results. In: Proceedings of the IEEE international conference on computer vision workshops. 2015. pp. 1–23.
    [187]
    Čehovin L, Leonardis A, and Kristan M Visual object tracking performance measures revisited IEEE Trans Image Process 2016 25 3 1261-1274
    [188]
    Wu Y, Lim J, Yang MH. Online object tracking: a benchmark. In: Proceedings of the IEEE conference on computer vision and pattern recognition. 2013. pp. 2411–2418.
    [189]
    Everingham M, Van Gool L, Williams CK, Winn J, and Zisserman A The pascal visual object classes (voc) challenge Int J Comput Vis 2010 88 2 303-338
    [190]
    Hare S, Golodetz S, Saffari A, Vineet V, Cheng MM, Hicks SL, and Torr PH Struck: structured output tracking with kernels IEEE Trans Pattern Anal Mach Intell 2016 38 10 2096-2109
    [191]
    Fang Y, Yuan Y, Li L, Wu J, Lin W, and Li Z Performance evaluation of visual tracking algorithms on video sequences with quality degradation IEEE Access 2017 5 2430-2441
    [192]
    Kwon J, Lee KM. Tracking of a non-rigid object via patch-based dynamic appearance modeling and adaptive basin hopping Montecarlo sampling. In: 2009 IEEE conference on computer vision and pattern recognition. IEEE; 2009. pp. 1208–1215.
    [193]
    Yang F, Lu H, and Yang MH Robust superpixel tracking IEEE Trans Image Prcess 2014 23 4 1639-1651
    [194]
    Kristan M, Kovacic S, Leonardis A, and Pers J A two-stage dynamic model for visual tracking IEEE Trans Syst Man Cybern Part B (Cybernetics). 2010 40 6 1505-1520
    [195]
    Kristan M, Pers J, Perse M, Kovacic S, Bon M. Multiple interacting targets tracking with application to team sports. In: ISPA 2005. Proceedings of the 4th international symposium on image and signal processing and analysis. IEEE; 2005. pp. 322–327.
    [196]
    Nawaz T and Cavallaro A A protocol for evaluating video trackers under real-world conditions IEEE Trans Image Process 2013 22 4 1354-1361
    [197]
    Zhang X and Payandeh S Application of visual tracking for robot-assisted laparoscopic surgery J Robot Syst 2002 19 7 315-328
    [198]
    Dey N, Ashour AS, Shi F, and Sherratt RS Wireless capsule gastrointestinal endoscopy: direction-of-arrival estimation based localization survey IEEE Rev Biomed Eng 2017 10 2-11
    [199]
    Su MC, Wang KC, and Chen GD An eye tracking system and its application in aids for people with severe disabilities Biomed Eng Appl Basis Commun 2006 18 06 319-327
    [200]
    Chen Y, Levy DL, Sheremata S, and Holzman PS Bipolar and schizophrenic patients differ in patterns of visual motion discrimination Schizophr Res 2006 88 1–3 208-216
    [201]
    Raudonis V, Simutis R, Narvydas G. Discrete eye tracking for medical applications. In: 2009 2nd International Symposium on Applied Sciences in Biomedical and Communication Technologies. IEEE; 2009. pp. 1–6.
    [202]
    De Santis A, Iacoviello D. A robust eye tracking procedure for medical and industrial applications. In: Advances in computational vision and medical image processing. Springer, Dordrecht; 2009. pp. 173–185.
    [203]
    Harezlak K and Kasprowski P Application of eye tracking in medicine: a survey, research issues and challenges Comput Med Imaging Graph 2018 65 176-190
    [204]
    Lennon J, Atkins E. Color-based vision tracking for an astronaut EVA assist vehicle (No. 2001-01-2135). SAE Technical Paper. 2001.
    [205]
    Borra S, Thanki R, Dey N. Satellite image classification. In:  Satellite image analysis: clustering and classification. Springer, Singapore. pp. 53–81.
    [206]
    Zhao Q, Yang Z, and Tao H Differential earth mover’s distance with its applications to visual tracking IEEE Trans Pattern Anal Mach Intell 2010 32 2 274-287
    [207]
    Kamate S and Yilmazer N Application of object detection and tracking techniques for unmanned aerial vehicles Proc Comput Sci 2015 61 436-441
    [208]
    Zhang R, Wang Z, Zhang Y. Astronaut visual tracking of flying assistant robot in space station based on deep learning and probabilistic model. Int J Aerosp Eng. 2018.
    [209]
    Mistry P, Maes P, Chang L. WUW-wear Ur world: a wearable gestural interface. In: CHI’09 extended abstracts on Human factors in computing systems. ACM; 2009. pp. 4111–4116.
    [210]
    Kerdvibulvech C. Markerless vision-based tracking for interactive augmented reality game. Int J Interact Worlds (IJIW’10). 2010.
    [211]
    Kerdvibulvech C. Asiatic skin color segmentation using an adaptive algorithm in changing luminance environment. 2011.
    [212]
    Klein G, Murray D. Parallel tracking and mapping on a camera phone. In: 2009 8th IEEE international symposium on mixed and augmented reality. IEEE; 2009. pp. 83–86.
    [213]
    Woodward C, Hakkarainen M. Mobile mixed reality system for architectural and construction site visualization. In: Augmented reality-some emerging application areas. IntechOpen; 2011.
    [214]
    Dantone M, Bossard L, Quack T, Van Gool L. Augmented faces. In: 2011 IEEE international conference on computer vision workshops (ICCV Workshops). IEEE; 2011. pp. 24–31.
    [215]
    Kerdvibulvech C. Augmented realityapplications using visual tracking. วารสารเทคโนโลยีสารสนเทศลาดกระบัง. 2016;2(1).
    [216]
    Casas S, Olanda R, and Dey N Motion cueing algorithms: a review: algorithms, evaluation and tuning Int J Virtual Augment Reality (IJVAR) 2017 1 1 90-106
    [217]
    Ribo M, Lang P, Ganster H, Brandner M, Stock C, and Pinz A Hybrid tracking for outdoor augmented reality applications IEEE Comput Graph Appl 2002 22 6 54-63
    [218]
    Klopschitz M, Schall G, Schmalstieg D, Reitmayr G. Visual tracking for augmented reality. In: 2010 International conference on indoor positioning and indoor navigation. IEEE; 2010. pp. 1–4.
    [219]
    Reitmayr G, Drummond T. Going out: robust model-based tracking for outdoor augmented reality. In: ISMAR. Vol. 6. 2006. pp. 109–118.
    [220]
    Rehg JM, Kanade T. Visual tracking of high dof articulated structures: an application to human hand tracking. In: European conference on computer vision. Springer, Berlin; 1994. pp. 35–46.
    [221]
    Gavrila DM The visual analysis of human movement: a survey Comput Vis Image Underst 1999 73 1 82-98
    [222]
    Lathuiliere F, Herve JY. Visual hand posture tracking in a gripper guiding application. In:  Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No. 00CH37065).  Vol. 2. IEEE; 2000. pp. 1688–1694.
    [223]
    Chen ZW, Chiang CC, and Hsieh ZT Extending 3D Lucas-Kanade tracking with adaptive templates for head pose estimation Mach Vis Appl 2010 21 6 889-903
    [224]
    Nistér D, Naroditsky O, and Bergen J Visual odometry for ground vehicle applications J Field Robot 2006 23 1 3-20
    [225]
    Bonin-Font F, Ortiz A, and Oliver G Visual navigation for mobile robots: a survey J Intell Rob Syst 2008 53 3 263-296
    [226]
    Borenstein J and Koren Y Real-time obstacle avoidance for fast mobile robots IEEE Trans Syst Man Cybern 1989 19 5 1179-1187
    [227]
    Bernardino A and Santos-Victor J Visual behaviours for binocular tracking Robot Auton Syst 1998 25 3–4 137-146
    [228]
    Ciliberto C, Pattacini U, Natale L, Nori F, Metta G. Reexamining lucas-kanade method for real-time independent motion detection: application to the icub humanoid robot. In: 2011 IEEE/RSJ international conference on intelligent robots and systems. IEEE; 2011. pp. 4154–4160.
    [229]
    Das PK, Mandhata SC, Panda CN, and Patro SN Vision based object tracking by mobile robot Int J Comput Appl 2012 45 8 40-42
    [230]
    Sibert JL, Gokturk M, Lavine RA. The reading assistant: eye gaze triggered auditory prompting for reading remediation. In:  Proceedings of the 13th annual ACM symposium on user interface software and technology. ACM; 2000. pp. 101-107.
    [231]
    Bolt RA. Eyes at the interface. In: Proceedings of the 1982 conference on Human factors in computing systems. ACM; 1982. pp. 360–362.
    [232]
    Jacob RJ Eye movement-based human-computer interaction techniques: toward non-command interfaces Adv Hum Comput Interact 1993 4 151-190
    [233]
    Sibert LE, Jacob RJ. Evaluation of eye gaze interaction. In:  Proceedings of the SIGCHI conference on human factors in computing systems. ACM; 2000. pp. 281–288.
    [234]
    McConkie GW, Zola D. Eye movement techniques in studying differences among developing readers. Center for the study of reading technical report; no. 377. 1986.
    [235]
    O’Regan JK Eye movements and reading Rev Oculomot Res 1990 4 395-453
    [236]
    Rayner K Eye movements in reading and information processing: 20 years of research Psychol Bull 1998 124 3 372
    [237]
    Wang H, Chignell M, Ishizuka M. Empathic tutoring software agents using real-time eye tracking. In: Proceedings of the 2006 symposium on eye tracking research and applications. ACM; 2006. pp. 73–78.
    [238]
    Tsai MJ, Hou HT, Lai ML, Liu WY, and Yang FY Visual attention for solving multiple-choice science problem: an eye-tracking analysis Comput Educ 2012 58 1 375-385
    [239]
    Dessus P, Cosnefroy O, Luengo V. “Keep Your Eyes on’em all!”: a mobile eye-tracking analysis of teachers’ sensitivity to students. In: European conference on technology enhanced learning. Springer, Cham; 2016. pp. 72–84.
    [240]
    Busjahn T, Schulte C, Sharif B, Begel A, Hansen M, Bednarik R, et al. Eye tracking in computing education. In: Proceedings of the tenth annual conference on International computing education research. ACM; 2014. pp. 3–10.
    [241]
    Sun Y, Li Q, Zhang H, Zou J. The application of eye tracking in education. In: International conference on intelligent information hiding and multimedia signal processing. Springer, Cham; 2017. pp. 27–33.
    [242]
    Obaidellah U, Al Haek M, and Cheng PCH A survey on the usage of eye-tracking in computer programming ACM Comput Surv (CSUR) 2018 51 1 5
    [243]
    Smith AW, Lovell BC. Visual tracking for sports applications. 2005.
    [244]
    Mauthner T, Bischof H. A robust multiple object tracking for sport applications. 2007.
    [245]
    Battal Ö, Balcıoğlu T, Duru AD. Analysis of gaze characteristics with eye tracking system during repeated breath holding exercises in underwater hockey elite athletes. In: 2016 20th National Biomedical Engineering Meeting (BIYOMUT). IEEE; 2016. pp. 1–4.
    [246]
    Kredel R, Vater C, Klostermann A, and Hossner EJ Eye-tracking technology and the dynamics of natural gaze behavior in sports: a systematic review of 40 years of research Front Psychol 2017 8 1845
    [247]
    Discombe RM and Cotterill ST Eye tracking in sport: a guide for new and aspiring researchers Sport Exerc Psychol Rev 2015 11 2 49-58
    [248]
    Mademlis I, Mygdalis V, Nikolaidis N, Pitas I. Challenges in autonomous UAV cinematography: an overview. In 2018 IEEE international conference on multimedia and expo (ICME). IEEE; 2018. pp. 1–6.
    [249]
    Passalis N, Tefas A, Pitas I. Efficient camera control using 2D visual information for unmanned aerial vehicle-based cinematography. In: 2018 IEEE international symposium on circuits and systems (ISCAS). IEEE; 2018. pp. 1–5.
    [250]
    Hubbard AW and Seng CN Visual movements of batters Res Q Am Assoc Health Phys Educ Recreat. 1954 25 1 42-57
    [251]
    Zachariadis O, Mygdalis V, Mademlis I, Nikolaidis N, Pitas I. 2D visual tracking for sports UAV cinematography applications. In:  2017 IEEE global conference on signal and information processing (GlobalSIP). IEEE; 2017. pp. 36–40.
    [252]
    Ramli L, Mohamed Z, Abdullahi AM, Jaafar HI, and Lazim IM Control strategies for crane systems: a comprehensive review Mech Syst Signal Process 2017 95 1-23
    [253]
    Peng KCC, Singhose W, and Bhaumik P Using machine vision and hand-motion control to improve crane operator performance IEEE Trans Syst Man Cybern Part A Syst Hum 2012 42 6 1496-1503
    [254]
    Wedel M, Pieters R. A review of eye-tracking research in marketing. In: Review of marketing research. Emerald Group Publishing Limited; 2008. pp. 123–147.
    [255]
    Koller M, Salzberger T, Brenner G, and Walla P Broadening the range of applications of eye-tracking in business research Analise Porto Alegre 2012 23 1 71-77
    [256]
    Zamani H, Abas A, and Amin MKM Eye tracking application on emotion analysis for marketing strategy J Telecommun Electron Comput Eng (JTEC) 2016 8 11 87-91
    [257]
    Wedel M and Pieters R Eye tracking for visual marketing Found Trends Market 2008 1 4 231-320
    [258]
    dos Santos RDOJ, de Oliveira JHC, Rocha JB, and Giraldi JDME Eye tracking in neuromarketing: a research agenda for marketing studies Int J Psychol Stud 2015 7 1 32
    [259]
    Boraston Z and Blakemore SJ The application of eye-tracking technology in the study of autism J Physiol 2007 581 3 893-898
    [260]
    Babenko B, Yang MH, Belongie S. Visual tracking with online multiple instance learning. In: 2009 IEEE conference on computer vision and pattern recognition. IEEE;2009. pp. 983–990.
    [261]
    Hu D, Zhou X, Yu X, Hou Z. Study on deep learning and its application in visual tracking. In: 2015 10th International conference on broadband and wireless computing, communication and applications (BWCCA). IEEE; 2015. pp. 240–246.
    [262]
    Liu W, Wang Z, Liu X, Zeng N, Liu Y, and Alsaadi FE A survey of deep neural network architectures and their applications Neurocomputing 2017 234 11-26
    [263]
    Lan K, Wang DT, Fong S, Liu LS, Wong KK, and Dey N A survey of data mining and deep learning in bioinformatics J Med Syst 2018 42 8 139
    [264]
    Dey N, Ashour AS, Borra S. (Eds.). Classification in bioapps: automation of decision making. Vol. 26. Springer; 2017.
    [265]
    Avidan S. Support vector tracking. In: Proceedings of the 2001 IEEE computer society conference on computer vision and pattern recognition. CVPR 2001. Vol. 1. IEEE; 2001. pp. I–I.
    [266]
    Schulter S, Leistner C, Wohlhart P, Roth PM, Bischof H. Accurate object detection with joint classification-regression random forests. In: Proceedings of the IEEE conference on computer vision and pattern recognition. 2014. pp. 923–930.
    [267]
    Anguita D, Parodi G, and Zunino R Neural structures for visual motion tracking Mach Vis Appl 1995 8 5 275-288
    [268]
    Zhang, J., Yang, L., & Wu, X. (2016, October). A survey on visual tracking via convolutional neural networks. In 2016 2nd IEEE International Conference on Computer and Communications (ICCC) (pp. 474-479). IEEE.
    [269]
    Sultana M, Mahmood A, Javed S, and Jung SK Unsupervised deep context prediction for background estimation and foreground segmentation. Mach Vis Appl. 2019 30 3 375-395
    [270]
    Hu L, Hong C, Zeng Z, and Wang X Two-stream person re-identification with multi-task deep neural networks Mach Vis Appl 2018 29 6 947-954
    [271]
    Li Z, Dey N, Ashour AS, Cao L, Wang Y, Wang D, et al. Convolutional neural network based clustering and manifold learning method for diabetic plantar pressure imaging dataset J Med Imaging Health Inf 2017 7 3 639-652
    [272]
    Wang Y, Chen Y, Yang N, Zheng L, Dey N, Ashour AS, et al. Classification of mice hepatic granuloma microscopic images based on a deep convolutional neural network Appl Soft Comput 2019 74 40-50
    [273]
    Wang D, Li Z, Dey N, Ashour AS, Moraru L, Biswas A, and Shi F Optical pressure sensors based plantar image segmenting using an improved fully convolutional network Optik 2019 179 99-114
    [274]
    Hu S, Liu M, Fong S, Song W, Dey N, Wong R. Forecasting China future MNP by deep learning. In: Behavior engineering and applications. Springer, Cham. 2018. pp. 169–210.
    [275]
    Zhuo L, Jiang L, Zhu Z, Li J, Zhang J, and Long H Vehicle classification for large-scale traffic surveillance videos using convolutional neural networks Mach Vis Appl 2017 28 7 793-802
    [276]
    Dey N, Fong S, Song W, Cho K. Forecasting energy consumption from smart home sensor network by deep learning. In: International Conference on Smart Trends for Information Technology and Computer Communications. Springer, Singapore. 2017. pp. 255–265.

    Cited By

    View all
    • (2021)A Probabilistic Particle Tracking Framework for Guided and Brownian Motion Systems with High Particle DensitiesSN Computer Science10.1007/s42979-021-00879-z2:6Online publication date: 17-Oct-2021
    • (2021)Two Efficient Visual Methods for Segment Self-localizationSN Computer Science10.1007/s42979-021-00492-02:2Online publication date: 7-Feb-2021
    • (2021)Workshop: Challenges for XR in Digital EntertainmentEntertainment Computing – ICEC 202110.1007/978-3-030-89394-1_43(489-498)Online publication date: 2-Nov-2021
    • Show More Cited By

    Recommendations

    Comments

    Information & Contributors

    Information

    Published In

    cover image SN Computer Science
    SN Computer Science  Volume 1, Issue 1
    Jan 2020
    823 pages

    Publisher

    Springer-Verlag

    Berlin, Heidelberg

    Publication History

    Published: 11 January 2020
    Accepted: 23 December 2019
    Received: 24 October 2019

    Author Tags

    1. Visual tracking
    2. Visual computing
    3. Motion estimation
    4. Object motion
    5. Object localization

    Qualifiers

    • Research-article

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • Downloads (Last 12 months)0
    • Downloads (Last 6 weeks)0

    Other Metrics

    Citations

    Cited By

    View all
    • (2021)A Probabilistic Particle Tracking Framework for Guided and Brownian Motion Systems with High Particle DensitiesSN Computer Science10.1007/s42979-021-00879-z2:6Online publication date: 17-Oct-2021
    • (2021)Two Efficient Visual Methods for Segment Self-localizationSN Computer Science10.1007/s42979-021-00492-02:2Online publication date: 7-Feb-2021
    • (2021)Workshop: Challenges for XR in Digital EntertainmentEntertainment Computing – ICEC 202110.1007/978-3-030-89394-1_43(489-498)Online publication date: 2-Nov-2021
    • (2020)Databases for Iris Biometric Systems: A SurveySN Computer Science10.1007/s42979-020-00344-31:6Online publication date: 8-Oct-2020

    View Options

    View options

    Get Access

    Login options

    Media

    Figures

    Other

    Tables

    Share

    Share

    Share this Publication link

    Share on social media

    -