skip to main content
10.1109/CASE49997.2022.9926631guideproceedingsArticle/Chapter ViewAbstractPublication PagesConference Proceedingsacm-pubtype
research-article

Context-Dependent Anomaly Detection with Knowledge Graph Embedding Models

Published: 20 August 2022 Publication History
  • Get Citation Alerts
  • Abstract

    Increasing the semantic understanding and contextual awareness of machine learning models is important for improving robustness and reducing susceptibility to data shifts. In this work, we leverage contextual awareness for the anomaly detection problem. Although graphed-based anomaly detection has been widely studied, context-dependent anomaly detection is an open problem and without much current research. We develop a general framework for converting a context-dependent anomaly detection problem to a link prediction problem, allowing well-established techniques from this domain to be applied. We implement a system based on our framework that utilizes knowledge graph embedding models and demonstrates the ability to detect outliers using context provided by a semantic knowledge base. We show that our method can detect context-dependent anomalies with a high degree of accuracy and show that current object detectors can detect enough classes to provide the needed context to show good performance within our example domain.

    References

    [1]
    K. He, X. Zhang, S. Ren, and J. Sun, “Delving deep into rectifiers: Surpassing human-level performance on imagenet classification,” 2015 IEEE International Conference on Computer Vision (ICCV), pp. 1026–1034 2015.
    [2]
    D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. van den Driessche, J. Schrittwieser, I. Antonoglou, V. Panneershelvam, M. Lanctot, S. Dieleman, D. Grewe, J. Nham, N. Kalchbrenner, I. Sutskever, T. P. Lillicrap, M. Leach, K. Kavukcuoglu, T. Graepel, and D. Hassabis, “Mastering the game of go with deep neural networks and tree search,” Nature, vol. 529, pp. 484–489, 2016.
    [3]
    F. Fuchs, Y. Song, E. Kaufmann, D. Scaramuzza, and P. Dürr, “Super-human performance in gran turismo sport using deep reinforcement learning,” IEEE Robotics and Automation Letters, vol. 6, pp. 4257–4264 2021.
    [4]
    S. F. Dodge and L. Karam, “A study and comparison of human and deep learning recognition performance under visual distortions,” 2017 26th International Conference on Computer Communication and Networks (ICCCN), pp. 1–7, 2017.
    [5]
    P. W. Koh, S. Sagawa, H. Marklund, S. M. Xie, M. Zhang, A. Balsubramani, W. Hu, M. Yasunaga, R. L. Phillips, I. Gao, et al., “Wilds: A benchmark of in-the-wild distribution shifts,” in International Conference on Machine Learning. PMLR, 2021, pp. 5637–5664.
    [6]
    J. G. Moreno-Torres, T. Raeder, R. Alaiz-RodríGuez, N. V. Chawla, and F. Herrera, “A unifying view on dataset shift in classification,” Pattern Recogn., vol. 45, no. 1, p. 521530, Jan 2012. [Online]. Available: https://doi.org/10.1016/j.patcog.2011.06.019
    [7]
    C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. Goodfellow, and R. Fergus, “Intriguing properties of neural networks,” arXiv preprint arXiv:1312.6199, 2013.
    [8]
    D. Hendrycks and T. Dietterich, “Benchmarking neural network robustness to common corruptions and perturbations,” arXiv preprint arXiv:1903.12261, 2019.
    [9]
    P. Anderson, Q. Wu, D. Teney, J. Bruce, M. Johnson, N. Sünderhauf, I. Reid, S. Gould, and A. van den Hengel, “Vision-and-language navigation: Interpreting visually-grounded navigation instructions in real environments,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2018.
    [10]
    G. Pang, C. Shen, L. Cao, and A. van den Hengel, “Deep learning for anomaly detection,” ACM Computing Surveys (CSUR), vol. 54, pp. 1 – 38, 2021.
    [11]
    V. Chandola, A. Banerjee, and V. Kumar, “Anomaly detection: A survey,” ACM Comput. Surv., vol. 41, 07 2009.
    [12]
    L. Akoglu, H. Tong, and D. Koutra, “Graph based anomaly detection and description: a survey,” Data Mining and Knowledge Discovery, vol. 29, pp. 626–688, 2014.
    [13]
    A. Rossi, D. Firmani, A. Matinata, P. Merialdo, and D. Barbosa, “Knowledge graph embedding for link prediction,” ACM Transactions on Knowledge Discovery from Data (TKDD), vol. 15, pp. 1 – 49, 2020.
    [14]
    A. Bordes, N. Usunier, A. García-Durán, J. Weston, and O. Yakhnenko, “Translating embeddings for modeling multi-relational data,” in NIPS, 2013.
    [15]
    K. Toutanova and D. Chen, “Observed versus latent features for knowledge base and text inference,” 07 2015.
    [16]
    I. Bozcan and E. Kayacan, “Context-dependent anomaly detection for low altitude traffic surveillance,” 2021 IEEE International Conference on Robotics and Automation (ICRA), pp. 224–230, 2021.
    [17]
    J. Sun, Huiming Qu, D. Chakrabarti, and C. Faloutsos, “Neighborhood formation and anomaly detection in bipartite graphs,” 2005, pp. 418–425.
    [18]
    X. Ma, J. Wu, S. Xue, J. Yang, Q. Z. Sheng, and H. Xiong, “A comprehensive survey on graph anomaly detection with deep learning,” ArXiv, vol. abs/2106.07178, 2021.
    [19]
    A. Agrawal, J. Lu, S. Antol, M. Mitchell, C. L. Zitnick, D. Parikh, and D. Batra, “Vqa: Visual question answering,” International Journal of Computer Vision, vol. 123, pp. 4–31, 2015.
    [20]
    K. Yi, C. Gan, Y. Li, P. Kohli, J. Wu, A. Torralba, and J. B. Tenenbaum, “Clevrer: Collision events for video representation and reasoning,” ArXiv, vol. abs/1910.01442, 2020.
    [21]
    J. Johnson, B. Hariharan, L. van der Maaten, L. Fei-Fei, C. L. Zitnick, and R. B. Girshick, “Clevr: A diagnostic dataset for compositional language and elementary visual reasoning,” 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1988–1997, 2017.
    [22]
    R. Krishna, Y. Zhu, O. Groth, J. Johnson, K. Hata, J. Kravitz, S. Chen, Y. Kalantidis, L.-J. Li, D. A. Shamma, M. S. Bernstein, and L. Fei-Fei, “Visual genome: Connecting language and vision using crowdsourced dense image annotations,” International Journal of Computer Vision, vol. 123, pp. 32–73, 2016.
    [23]
    T.-Y. Lin, M. Maire, S. J. Belongie, J. Hays, P. Perona, D. Ramanan, P. Dollár, and C. L. Zitnick, “Microsoft coco: Common objects in context,” in ECCV, 2014.
    [24]
    W. Wu, T. Chang, and X. Li, “Visual-and-language navigation: A survey and taxonomy,” ArXiv, vol. abs/2108.11544, 2021.
    [25]
    A. Hogan, E. Blomqvist, M. Cochez, C. dAmato, G. de Melo, C. Gutiérrez, S. Kirrane, J. E. L. Gayo, R. Navigli, S. Neumaier, A.- C. N. Ngomo, A. Polleres, S. M. Rashid, A. Rula, L. Schmelzeisen, J. Sequeda, S. Staab, and A. Zimmermann, “Knowledge graphs,” ACM Computing Surveys (CSUR), vol. 54, pp. 1 – 37, 2021.
    [26]
    M. Wang, L. Qiu, and X. Wang, “A survey on knowledge graph embeddings for link prediction,” Symmetry, vol. 13, no. 3, p. 485, Mar 2021. [Online]. Available: https://doi.org/10.3390/sym13030485
    [27]
    D. Q. Nguyen, “An overview of embedding models of entities and relationships for knowledge base completion,” ArXiv, vol. abs/1703.08098, 2017.
    [28]
    A. Boschin, “Torchkge: Knowledge graph embedding in python and pytorch,” ArXiv, vol. abs/2009.02963, 2020.
    [29]
    R. Speer, J. Chin, and C. Havasi, “Conceptnet 5.5: An open multilingual graph of general knowledge,” in AAAI, 2017.
    [30]
    I. Krasin, T. Duerig, N. Alldrin, V. Ferrari, S. Abu-El-Haija, A. Kuznetsova, H. Rom, J. Uijlings, S. Popov, S. Kamali, M. Malloci, J. Pont-Tuset, A. Veit, S. Belongie, V. Gomes, A. Gupta, C. Sun, G. Chechik, D. Cai, Z. Feng, D. Narayanan, and K. Murphy, “Openimages: A public dataset for large-scale multi-label and multi-class image classification.” Dataset available from https://storage.googleapis.com/openimages/web/index.html, 2017.

    Index Terms

    1. Context-Dependent Anomaly Detection with Knowledge Graph Embedding Models
            Index terms have been assigned to the content through auto-classification.

            Recommendations

            Comments

            Information & Contributors

            Information

            Published In

            cover image Guide Proceedings
            2022 IEEE 18th International Conference on Automation Science and Engineering (CASE)
            Aug 2022
            1894 pages

            Publisher

            IEEE Press

            Publication History

            Published: 20 August 2022

            Qualifiers

            • Research-article

            Contributors

            Other Metrics

            Bibliometrics & Citations

            Bibliometrics

            Article Metrics

            • 0
              Total Citations
            • 0
              Total Downloads
            • Downloads (Last 12 months)0
            • Downloads (Last 6 weeks)0

            Other Metrics

            Citations

            View Options

            View options

            Get Access

            Login options

            Media

            Figures

            Other

            Tables

            Share

            Share

            Share this Publication link

            Share on social media

            -