skip to main content
research-article

3D imaging spectroscopy for measuring hyperspectral patterns on solid objects

Published: 01 July 2012 Publication History
  • Get Citation Alerts
  • Abstract

    Sophisticated methods for true spectral rendering have been developed in computer graphics to produce highly accurate images. In addition to traditional applications in visualizing appearance, such methods have potential applications in many areas of scientific study. In particular, we are motivated by the application of studying avian vision and appearance. An obstacle to using graphics in this application is the lack of reliable input data. We introduce an end-to-end measurement system for capturing spectral data on 3D objects. We present the modification of a recently developed hyperspectral imager to make it suitable for acquiring such data in a wide spectral range at high spectral and spatial resolution. We capture four megapixel images, with data at each pixel from the near-ultraviolet (359 nm) to near-infrared (1,003 nm) at 12 nm spectral resolution. We fully characterize the imaging system, and document its accuracy. This imager is integrated into a 3D scanning system to enable the measurement of the diffuse spectral reflectance and fluorescence of specimens. We demonstrate the use of this measurement system in the study of the interplay between the visual capabilities and appearance of birds. We show further the use of the system in gaining insight into artifacts from geology and cultural heritage.

    Supplementary Material

    ZIP File (a38-kim.zip)
    Supplemental material.
    MP4 File (tp126_12.mp4)

    References

    [1]
    3DCoForm, 2012. MeshLab. http://meshlab.sourceforge.net/.
    [2]
    Andersson, S., ornborg, J., and Andersson, M. 1998. Ultraviolet sexual dimorphism and assortative mating in blue tits. In Proc. R. Soc. Lond., vol. 265, 445--450.
    [3]
    Arnold, K. E., Owens, I. P. F., and Marshall, N. J. 2002. Fluorescent signaling in parrots. Science 295, 5552, 92.
    [4]
    Attas, M., Cloutis, E., Collins, C., Goltz, D., Majzels, C., Mansfield, J., and Mantsch, H. 2003. Near-infrared spectroscopic imaging in art conservation: investigation of drawing constituents. J. Cultural Heritage 4, 2, 127--136.
    [5]
    Battle, D. R. 1997. The measurement of colour. In Colour Physics for Industry, R. McDonald, Ed., 2nd ed. Soc. Dyers Col., Bradford, 57--80.
    [6]
    Bennett, A. T. D., Cuthill, I. C., Partridge, J. C., and Maier, E. J. 1996. Ultraviolet vision and mate choice in zebra finches. Nature 380, 433--435.
    [7]
    Bernardini, F., and Rushmeier, H. 2002. The 3D model acquisition pipeline. Comput. Graph. Forum 21, 2, 149--149.
    [8]
    Bernardini, F., Martin, I. M., and Rushmeier, H. E. 2001. High-quality texture reconstruction from multiple scans. IEEE Trans. Vis. Comput. Graph. 7, 4, 318--332.
    [9]
    Bioucas-Dias, J., and Figueiredo, M. 2007. A new twist: two-step iterative shrinkage/thresholding for image restoration. IEEE Trans. Image Processing 16, 12, 2992--3004.
    [10]
    Brady, D. J. 2008. Optical Imaging and Spectroscopy. Wiley-interscience, New Jersey.
    [11]
    Brusco, N., Capeleto, S., Fedel, M., Paviotti, A., Poletto, L., Cortelazzo, G. M., and Tondello, G. 2006. A system for 3D modeling frescoed historical buildings with multispectral texture information. Machine Vision and Appl. 17, 6, 373--393.
    [12]
    Burns, P. D. 2002. Slanted-edge MTF for digital camera and scanner analysis. In Proc. PICS Conf., IS&T, 135--138.
    [13]
    Chambolle, A. 2004. An algorithm for total variation minimization and applications. J. Mathematical Imaging and Vision 20, 1--2, 89--97.
    [14]
    Chen, D. M., and Goldsmith, T. H. 1986. Four spectral classes of cone in the retinas of birds. J. Comparative Physiology A 159, 4, 473--479.
    [15]
    Chen, D. M., Collins, J. S., and Goldsmith, T. H. 1984. The ultraviolet receptor of bird retinas. Science 225, 4659, 337--340.
    [16]
    CIE. 2001. Improvement to industrial colour difference equation. CIE Pub. 142, Commission Internationale de l'Eclairage, Vienna.
    [17]
    Devlin, K., Chalmers, A., Wilkie, A., and Purgathofer, W. 2002. Tone reproduction and physically based spectral rendering. Eurographics 2002: State of the Art Reports, 101--123.
    [18]
    Du, H., Tong, X., Cao, X., and Lin, S. 2009. A prism-based system for multispectral video acquisition. In Proc. Int. Conf. Comput. Vision (ICCV), IEEE, 175--182.
    [19]
    Elgazzar, S., Liscano, R., Blais, F., and Miles, A. 1997. 3-D data acquisition for indoor environment modeling using a compact active range sensor. In Proc. the IEEE Instrumentation, Measurement and Technology Conference, 1--8.
    [20]
    Farouk, M., Rifai, I. E., Tayar, S. E., Shishiny, H. E., Hosny, M., Rayes, M. E., Gomes, J., Giordano, F., Rushmeier, H. E., Bernardini, F., and Magerlein, K. 2003. Scanning and processing 3D objects for web display. In Proc. Int. Conf. 3D Digital Imaging and Modeling (3DIM), 310--317.
    [21]
    Figueiredo, M., Nowak, R., and Wright, S. 2007. Gradient projection for sparse reconstruction: Application to compressed sensing and other inverse problems. IEEE J. Selected Topics in Signal Processing 1, 4, 586--597.
    [22]
    Fischer, C., and Kakoulli, I. 2006. Multispectral and hyper-spectral imaging technologies in conservation: current research and potential applications. Reviews in Conservation 7, 3--16.
    [23]
    Habel, R., Kudenov, M., and Wimmer, M. 2012. Practical spectral photography. Comput. Graph. Forum 31, 2, 1--10.
    [24]
    Hart, N. S. 2001. The visual ecology of avian photoreceptors. Progress in Retinal and Eye Research 20, 5, 675--703.
    [25]
    Holroyd, M., Lawrence, J., and Zickler, T. 2010. A coaxial optical scanner for synchronous acquisition of 3D geometry and surface reflectance. ACM Trans. Graph. (Proc. SIGGRAPH 2010) 29, 3, 99:1--12.
    [26]
    ISO. 2000. Photography -- electronic still-picture cameras -- resolution measurements. Tech. Rep. ISO 12233:2000, International Organization for Standardization (ISO).
    [27]
    Kawakami, R., Wright, J., Tai, Y.-W., Matsushita, Y., Ben-Ezra, M., and Ikeuchi, K. 2011. High-resolution hyperspectral imaging via matrix factorization. In Proc. IEEE Conf. Comput. Vision and Pattern Recognition, 2329--2336.
    [28]
    Kittle, D., Choi, K., Wagadarikar, A., and Brady, D. J. 2010. Multiframe image estimation for coded aperture snapshot spectral imagers. Appl. Opt. 49, 36, 6824--6833.
    [29]
    Labshpere, 2011. Spectralon diffuse reflectance standards. http://www.labsphere.com/uploads/datasheets/diffuse-reflectance-standards-product-sheet.pdf.
    [30]
    Land, M. F., and Nilsson, D.-E., Eds. 2002. Animal Eyes. Oxford University Press, Oxford.
    [31]
    Lensch, H., Kautz, J., Goesele, M., Heidrich, W., and Seidel, H. 2003. Image-based reconstruction of spatial appearance and geometric detail. ACM Trans. Graph. (Proc. SIGGRAPH 2003) 22, 2, 234--257.
    [32]
    Levoy, M., Pulli, K., Curless, B., Rusinkiewicz, S., Koller, D., Pereira, L., Ginzton, M., Anderson, S. E., Davis, J., Ginsberg, J., Shade, J., and Fulk, D. 2000. The digital Michelangelo project: 3D scanning of large statues. In Proc. SIGGRAPH 2000, 131--144.
    [33]
    Mansouri, A., Lathuiliere, A., Marzani, F. S., Voisin, Y., and Gouton, P. 2007. Toward a 3D multispectral scanner: An application to multimedia. IEEE Multimedia 14, 1, 40--47.
    [34]
    Mcgraw, K. J. 2006. Mechanics of uncommon colors in birds: pterins, porphyrins, and psittacofulvins. In Bird coloration, Vol. I, Mechanisms and measurements, G. E. Hill and K. J. Mcgraw, Eds. Harvard University Press, Cambridge, Massachusetts.
    [35]
    Newsome, D., and Modreski, P. 1981. The colors and spectral distributions of fluorescent minerals. J. the Fluorescent Mineral Society 10, 7--56.
    [36]
    Next-Limit-Technologies, 2012. Maxwell Render. http://www.maxwellrender.com/.
    [37]
    nVidia, 2012. About iRay, physically correct GPU rendering technology. http://www.mentalimages.com/products/iray/about-iray.html.
    [38]
    Qin, J. 2010. Hyperspectral imaging instruments. In Hyperspectral Imaging for Food Quality Analysis and Control, D.-W. Sun, Ed. Elsevier, 129--175.
    [39]
    Rapantzikos, K., and Balas, C. 2005. Hyperspectral imaging: potential in non-destructive analysis of palimpsests. In Proc. Int. Conf. Image Processing (ICIP), vol. 2, 618--621.
    [40]
    Saunders, D., and Cupitt, J. 1993. Image processing at the National Gallery: The VASARI project. National Gallery Tech. Bull. 14, 72--86.
    [41]
    Stoddard, M. C., and Prum, R. O. 2008. Evolution of avian plumage color in a tetrahedral color space: a phylogenetic analysis of new world buntings. The American Naturalist 171, 6, 755--776.
    [42]
    Stoddard, M. C., and Prum, R. O. 2011. How colorful are birds? Evolution of the avian plumage color gamut. Behavioral Ecology 22, 5, 1042--1052.
    [43]
    Sugiura, H., Kuno, T., Watanabe, N., Matoba, N., Hayashi, J., and Miyata, Y. 2000. Development of a multi-spectral camera system. In Proc. SPIE 3965, 331--339.
    [44]
    Sun, X., and Pitsianis, N. 2008. Solving non-negative linear inverse problems with the NeAREst method. Proc. SPIE 7074, 707402.
    [45]
    Thoury, M., Elias, M., Frigerio, J. M., and Barthou, C. 2005. Non-destructive identification of varnishes by UV fluorescence spectroscopy. In Proc. SPIE 5857, 1--11.
    [46]
    Vos, J. J. 1978. Colorimetric and photometric properties of a 2-deg fundamental observer. Color Res. Appl. 3, 125--128.
    [47]
    Wagadarikar, A., John, R., Willett, R., and Brady, D. J. 2008. Single disperser design for coded aperture snapshot spectral imaging. Appl. Opt. 47, 10, B44--B51.
    [48]
    Wagadarikar, A. A., Pitsianis, N. P., Sun, X., and Brady, D. J. 2009. Video rate spectral imaging using a coded aperture snapshot spectral imager. Opt. Express 17, 8, 6368--6388.
    [49]
    Ware, G., Chabries, D., Christiansen, R., Brady, J., and Martin, C. 2000. Multispectral analysis of ancient Maya pigments: implications for the Naj Tunich Corpus. In Proc. IEEE Geoscience and Remote Sensing Symposium, vol. 6, 2489--2491.
    [50]
    Wright, S., Nowak, R., and Figueiredo, M. 2009. Sparse reconstruction by separable approximation. IEEE Trans. Signal Processing 57, 7, 2479--2493.
    [51]
    Zhao, Y., Berns, R. S., Taplin, L. A., and Coddington, J. 2008. An investigation of multispectral imaging for the mapping of pigments in paintings. In Proc. SPIE 6810, 1--9.

    Cited By

    View all
    • (2024)Reversible-Prior-Based Spectral-Spatial Transformer for Efficient Hyperspectral Image ReconstructionInternational Journal on Semantic Web & Information Systems10.4018/IJSWIS.34445720:1(1-22)Online publication date: 7-May-2024
    • (2024)Recording animal-view videos of the natural world using a novel camera system and software packagePLOS Biology10.1371/journal.pbio.300244422:1(e3002444)Online publication date: 23-Jan-2024
    • (2024)Anti-laser interference methods for compressive spectral imaging based on grayscale coded apertureOptics Continuum10.1364/OPTCON.5042193:1(102)Online publication date: 9-Jan-2024
    • Show More Cited By

    Recommendations

    Comments

    Information & Contributors

    Information

    Published In

    cover image ACM Transactions on Graphics
    ACM Transactions on Graphics  Volume 31, Issue 4
    July 2012
    935 pages
    ISSN:0730-0301
    EISSN:1557-7368
    DOI:10.1145/2185520
    Issue’s Table of Contents
    Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    Published: 01 July 2012
    Published in TOG Volume 31, Issue 4

    Permissions

    Request permissions for this article.

    Check for updates

    Qualifiers

    • Research-article

    Funding Sources

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • Downloads (Last 12 months)74
    • Downloads (Last 6 weeks)7

    Other Metrics

    Citations

    Cited By

    View all
    • (2024)Reversible-Prior-Based Spectral-Spatial Transformer for Efficient Hyperspectral Image ReconstructionInternational Journal on Semantic Web & Information Systems10.4018/IJSWIS.34445720:1(1-22)Online publication date: 7-May-2024
    • (2024)Recording animal-view videos of the natural world using a novel camera system and software packagePLOS Biology10.1371/journal.pbio.300244422:1(e3002444)Online publication date: 23-Jan-2024
    • (2024)Anti-laser interference methods for compressive spectral imaging based on grayscale coded apertureOptics Continuum10.1364/OPTCON.5042193:1(102)Online publication date: 9-Jan-2024
    • (2024)Direct object detection with snapshot multispectral compressed imaging in a short-wave infrared bandOptics Letters10.1364/OL.51728449:8(1941)Online publication date: 4-Apr-2024
    • (2024)Ultra-high-speed four-dimensional hyperspectral imagingOptics Express10.1364/OE.520788Online publication date: 7-May-2024
    • (2024)Degradation-Aware Dynamic Fourier-Based Network for Spectral Compressive ImagingIEEE Transactions on Multimedia10.1109/TMM.2023.330445026(2838-2850)Online publication date: 2024
    • (2024)Degradation Estimation Recurrent Neural Network With Local and Non-Local Priors for Compressive Spectral ImagingIEEE Transactions on Geoscience and Remote Sensing10.1109/TGRS.2024.341027262(1-15)Online publication date: 2024
    • (2024)Data rectification and decoding of a microlens array-based multi-spectral light field imaging systemOptics and Lasers in Engineering10.1016/j.optlaseng.2024.108327180(108327)Online publication date: Sep-2024
    • (2023)HyFormer: Hybrid Grouping-Aggregation Transformer and Wide-Spanning CNN for Hyperspectral Image Super-ResolutionRemote Sensing10.3390/rs1517413115:17(4131)Online publication date: 23-Aug-2023
    • (2023)Developing an HDR Imaging Method for an Ultra-thin Light-Field CameraJournal of the Korea Computer Graphics Society10.15701/kcgs.2023.29.3.1329:3(13-19)Online publication date: 25-Jul-2023
    • Show More Cited By

    View Options

    Get Access

    Login options

    Full Access

    View options

    PDF

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    Media

    Figures

    Other

    Tables

    Share

    Share

    Share this Publication link

    Share on social media

    -