Skip to main content

The Genomes of Endophytic Bacteria

  • Chapter
  • First Online:
Endophytes of Forest Trees

Part of the book series: Forestry Sciences ((FOSC,volume 80))

Abstract

Genome sequencing and comparative genomics has had major impact on our understanding of the genetic potential, ecology, and evolution of microorganisms. Analysis of a dozen bacterial endophyte genomes have recently contributed insights into the molecular mechanisms that enable bacterial exploration of the plant interior, including genes for motility, colonization and synergistic interactions with the host. Known host-interaction systems include type IV pili, flagella, diverse dedicated secretion systems, genes for phytohormone synthesis and inhibition, bacterial volatiles, and antimicrobials. Different endophytes use different sets of known host interaction systems, suggesting that there are multiple strategies to colonize and persist within plants, and that there are different ways in which endophytes can interact with their host. The majority of host-interaction systems are shared with other bacteria, including plant- and animal pathogens. Functional exploration of the large sets of endophyte genes encoding hypothetical proteins (especially those shared with other phytobacteria) promises to further elucidate bacterial adaptation to life in plant tissue, especially in regards to plant colonization, defense evasion and plant growth promotion.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (Canada)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (Canada)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

') var buybox = document.querySelector("[data-id=id_"+ timestamp +"]").parentNode var buyingOptions = buybox.querySelectorAll(".buying-option") ;[].slice.call(buyingOptions).forEach(initCollapsibles) var buyboxMaxSingleColumnWidth = 480 function initCollapsibles(subscription, index) { var toggle = subscription.querySelector(".buying-option-price") subscription.classList.remove("expanded") var form = subscription.querySelector(".buying-option-form") var priceInfo = subscription.querySelector(".price-info") var buyingOption = toggle.parentElement if (toggle && form && priceInfo) { toggle.setAttribute("role", "button") toggle.setAttribute("tabindex", "0") toggle.addEventListener("click", function (event) { var expandedBuyingOptions = buybox.querySelectorAll(".buying-option.expanded") var buyboxWidth = buybox.offsetWidth ;[].slice.call(expandedBuyingOptions).forEach(function(option) { if (buyboxWidth <= buyboxMaxSingleColumnWidth && option != buyingOption) { hideBuyingOption(option) } }) var expanded = toggle.getAttribute("aria-expanded") === "true" || false toggle.setAttribute("aria-expanded", !expanded) form.hidden = expanded if (!expanded) { buyingOption.classList.add("expanded") } else { buyingOption.classList.remove("expanded") } priceInfo.hidden = expanded }, false) } } function hideBuyingOption(buyingOption) { var toggle = buyingOption.querySelector(".buying-option-price") var form = buyingOption.querySelector(".buying-option-form") var priceInfo = buyingOption.querySelector(".price-info") toggle.setAttribute("aria-expanded", false) form.hidden = true buyingOption.classList.remove("expanded") priceInfo.hidden = true } function initKeyControls() { document.addEventListener("keydown", function (event) { if (document.activeElement.classList.contains("buying-option-price") && (event.code === "Space" || event.code === "Enter")) { if (document.activeElement) { event.preventDefault() document.activeElement.click() } } }, false) } function initialStateOpen() { var buyboxWidth = buybox.offsetWidth ;[].slice.call(buybox.querySelectorAll(".buying-option")).forEach(function (option, index) { var toggle = option.querySelector(".buying-option-price") var form = option.querySelector(".buying-option-form") var priceInfo = option.querySelector(".price-info") if (buyboxWidth > buyboxMaxSingleColumnWidth) { toggle.click() } else { if (index === 0) { toggle.click() } else { toggle.setAttribute("aria-expanded", "false") form.hidden = "hidden" priceInfo.hidden = "hidden" } } }) } initialStateOpen() if (window.buyboxInitialised) return window.buyboxInitialised = true initKeyControls() })()

Institutional subscriptions

Similar content being viewed by others

Abbreviations

ACC:

1-aminocyclopropane-1-carboxylate

GI:

genomic islands

MGEs:

mobile genetic elements

IS:

insertion sequence

TAM:

tryptamine pathway

IAN:

indole-3-acetonitrile pathway

ISR:

induced systemic resistance

GABA:

Gamma-aminobutyrate

IAM:

indole-3-acetamide pathway

IPA:

Indole-3-pyruvate pathway

TSO:

the tryptophan side-chain oxidase pathway

IAA:

indole acetic acid

LPS:

lipopolysaccharide

References

  • Abdallah AM, Gey van Pittius NC, Champion PA et al (2007) Type VII secretion – mycobacteria show the way. Nat Rev Microbiol 5:883–891

    PubMed  CAS  Google Scholar 

  • Abramovitch RB, Anderson JC, Martin GB (2006) Bacterial elicitation and evasion of plant innate immunity. Nat Rev Mol Cell Biol 7:601–611

    PubMed  CAS  Google Scholar 

  • Ahmad F, Ahmad I, Khan MS (2008) Screening of free-living rhizospheric bacteria for their multiple plant growth promoting activities. Microbiol Res 163:173–181

    PubMed  CAS  Google Scholar 

  • Alvarez-Martinez CE, Christie PJ (2009) Biological diversity of prokaryotic type IV secretion systems. Microbiol Mol Biol Rev 73:775–808

    PubMed  CAS  Google Scholar 

  • Antunes LCM, Ferreira RBR, Buckner MMC et al (2010) Quorum sensing in bacterial virulence. Microbiology 156:2271–2282

    PubMed  CAS  Google Scholar 

  • Balder R, Hassel J, Lipski S et al (2007) Moraxella catarrhalis strain O35E expresses two filamentous hemagglutinin-like proteins that mediate adherence to human epithelial cells. Infect Immun 75:2765–2775

    PubMed  CAS  Google Scholar 

  • Barnhart MM, Chapman MR (2006) Curli biogenesis and function. Annu Rev Microbiol 60: 131–147

    PubMed  CAS  Google Scholar 

  • Belimov A, Hontzeas N, Safronova V et al (2005) Cadmium-tolerant plant growth-promoting bacteria associated with the roots of Indian mustard (Brassica juncea L. Czern.). Soil Biol Biochem 37:241–250

    CAS  Google Scholar 

  • Belimov AA, Dodd IC, Hontzeas N et al (2009) Rhizosphere bacteria containing 1-aminocyclopropane-1-carboxylate deaminase increase yield of plants grown in drying soil via both local and systemic hormone signalling. New Phytol 181:413–423

    PubMed  CAS  Google Scholar 

  • Berglund EC, Frank AC, Calteau A et al (2009) Run-off replication of host-adaptability genes is associated with gene transfer agents in the genome of mouse-infecting Bartonella grahamii. PLoS Genet 5:e1000546

    PubMed  Google Scholar 

  • Bertalan M, Albano R, de Padua V et al (2009) Complete genome sequence of the sugarcane nitrogen-fixing endophyte Gluconacetobacter diazotrophicus Pal5. BMC Genomics 10:450

    PubMed  Google Scholar 

  • Bingle LE, Bailey CM, Pallen MJ (2008) Type VI secretion: a beginner’s guide. Curr Opin Microbiol 11:3–8

    PubMed  CAS  Google Scholar 

  • Blanco Y, Blanch M, Pinon D et al (2005) Antagonism of Gluconacetobacter diazotrophicus (a sugarcane endosymbiont) against Xanthomonas albilineans (pathogen) studied in alginate-immobilized sugarcane stalk tissues. J Biosci Bioeng 99:366–371

    PubMed  CAS  Google Scholar 

  • Blocker A, Komoriya K, Aizawa S (2003) Type III secretion systems and bacterial flagella: insights into their function from structural similarities. Proc Natl Acad Sci USA 100:3027–3030

    PubMed  CAS  Google Scholar 

  • Blomqvist K, Nikkola M, Lehtovaara P et al (1993) Characterization of the genes of the 2,3-butanediol operons from Klebsiella terrigena and Enterobacter aerogenes. J Bacteriol 175:1394–1404

    Google Scholar 

  • Bohm M, Hurek T, Reinhold-Hurek B (2007) Twitching motility is essential for endophytic rice colonization by the N2-fixing endophyte Azoarcus sp. strain BH72. Mol Plant Microbe Interact 20:526–533

    PubMed  Google Scholar 

  • Bordiec S, Paquis S, Lacroix H et al (2011) Comparative analysis of defence responses induced by the endophytic plant growth-promoting rhizobacterium Burkholderia phytofirmans strain PsJN and the non-host bacterium Pseudomonas syringae pv. pisi in grapevine cell suspensions. J Exp Bot 62:595–603

    PubMed  CAS  Google Scholar 

  • Bottini R, Fulchieri M, Pearce D et al (1989) Identification of gibberellins A(1), A(3), and Iso-A(3) in cultures of Azospirillum lipoferum. Plant Physiol 90:45–47

    PubMed  CAS  Google Scholar 

  • Bown AW, Macgregor KB, Shelp BJ (2006) Gamma-aminobutyrate: defense against invertebrate pests? Trends Plant Sci 11:424–427

    PubMed  CAS  Google Scholar 

  • Brandl MT, Quinones B, Lindow SE (2001) Heterogeneous transcription of an indoleacetic acid biosynthetic gene in Erwinia herbicola on plant surfaces. Proc Natl Acad Sci USA 98: 3454–3459

    PubMed  CAS  Google Scholar 

  • Camilli A, Bassler BL (2006) Bacterial small-molecule signaling pathways. Science 311: 1113–1116

    PubMed  CAS  Google Scholar 

  • Cho SM, Kang BR, Han SH et al (2008) 2R,3R-butanediol, a bacterial volatile produced by Pseudomonas chlororaphis O6, is involved in induction of systemic tolerance to drought in Arabidopsis thaliana. Mol Plant Microbe Interact 21:1067–1075

    PubMed  CAS  Google Scholar 

  • Dale C, Moran NA (2006) Molecular interactions between bacterial symbionts and their hosts. Cell 126:453–465

    PubMed  CAS  Google Scholar 

  • Dale C, Plague GR, Wang B et al (2002) Type III secretion systems and the evolution of mutualistic endosymbiosis. Proc Natl Acad Sci USA 99:12397–12402

    PubMed  CAS  Google Scholar 

  • De Meyer G, Capieau K, Audenaert K et al (1999) Nanogram amounts of salicylic acid produced by the rhizobacterium Pseudomonas aeruginosa 7NSK2 activate the systemic acquired resistance pathway in bean. Mol Plant Microbe Interact 12:450–458

    PubMed  Google Scholar 

  • de Torres M, Mansfield JW, Grabov N et al (2006) Pseudomonas syringae effector AvrPtoB suppresses basal defence in Arabidopsis. Plant J 47:368–382

    PubMed  Google Scholar 

  • Deakin WJ, Broughton WJ (2009) Symbiotic use of pathogenic strategies: rhizobial protein secretion systems. Nat Rev Microbiol 7:312–320

    PubMed  CAS  Google Scholar 

  • Delepelaire P (2004) Type I secretion in gram-negative bacteria. Biochim Biophys Acta 1694: 149–161

    PubMed  CAS  Google Scholar 

  • Dong Y, Iniguez AL, Triplett EW (2003) Quantitative assessments of the host range and strain specificity of endophytic colonization by Klebsiella pneumoniae 342. Plant Soil 257:49–59

    CAS  Google Scholar 

  • Doty SL, Oakley B, Xin G et al (2009) Diazotrophic endophytes of native cottonwood and willow. Symbiosis 47:23–33

    CAS  Google Scholar 

  • Ettema TJ, Andersson SG (2009) The alpha-proteobacteria: the Darwin finches of the bacterial world. Biol Lett 5:429–432

    PubMed  Google Scholar 

  • Felix G, Duran JD, Volko S et al (1999) Plants have a sensitive perception system for the most conserved domain of bacterial flagellin. Plant J 18:265–276

    PubMed  CAS  Google Scholar 

  • Finnie C, Zorreguieta A, Hartley NM et al (1998) Characterization of Rhizobium leguminosarum exopolysaccharide glycanases that are secreted via a type I exporter and have a novel heptapeptide repeat motif. J Bacteriol 180:1691–1699

    PubMed  CAS  Google Scholar 

  • Fouts DE, Tyler HL, DeBoy RT et al (2008) Complete genome sequence of the N2-fixing broad host range endophyte Klebsiella pneumoniae 342 and virulence predictions verified in mice. PLoS Genet 4:e1000141

    PubMed  Google Scholar 

  • Frank AC, Alsmark CM, Thollesson M et al (2005) Functional divergence and horizontal transfer of type IV secretion systems. Mol Biol Evol 22:1325–1336

    PubMed  CAS  Google Scholar 

  • Frost LS, Leplae R, Summers AO et al (2005) Mobile genetic elements: the agents of open source evolution. Nat Rev Microbiol 3:722–732

    PubMed  CAS  Google Scholar 

  • Gill S, Tuteja N (2010) Polyamines and abiotic stress tolerance in plants. Plant Signal Behav 5: 26–33

    PubMed  CAS  Google Scholar 

  • Glick B (1995) The enhancement of plant growth by free-living bacteria. Can J Microbiol 42: 109–117

    Google Scholar 

  • Glick B, Penrose D, Li J (1998) A model for the lowering of plant ethylene concentrations by plant growth-promoting bacteria. J Theor Biol 190:63–68

    PubMed  CAS  Google Scholar 

  • Gottig N, Garavaglia BS, Garofalo CG et al (2009) A filamentous hemagglutinin-like protein of Xanthomonas axonopodis pv. citri, the phytopathogen responsible for citrus canker, is involved in bacterial virulence. PLoS ONE 4:e4358

    PubMed  Google Scholar 

  • Guo M, Manulis S, Barash I et al (2001) The operon for cytokinin biosynthesis of Erwinia herbicola pv. gypsophilae contains two promoters and is plant induced. Can J Microbiol 47:1126–1131

    PubMed  CAS  Google Scholar 

  • Han JI, Choi HK, Lee SW et al (2011) Complete genome qequence of the metabolically versatile plant growth-promoting endophyte Variovorax paradoxus S110. J Bacteriol 193:1183–1190

    PubMed  Google Scholar 

  • Hardoim PR, van Overbeek LS, Elsas JD (2008) Properties of bacterial endophytes and their proposed role in plant growth. Trends Microbiol 16:463–471

    PubMed  CAS  Google Scholar 

  • Harrison PW, Lower RPJ, Kim NKD et al (2010) Introducing the bacterial ‘chromid’: not a chromosome, not a plasmid. Trends Microbiol 18:141–148

    PubMed  CAS  Google Scholar 

  • Henderson IR, Navarro-Garcia F, Desvaux M et al (2004) Type V protein secretion pathway: the autotransporter story. Microbiol Mol Biol Rev 68:692–744

    PubMed  CAS  Google Scholar 

  • Hernandez L, Arrieta J, Menendez C et al (1995) Isolation and enzymic properties of levansucrase secreted by Acetobacter diazotrophicus SRT4, a bacterium associated with sugar cane. Biochem J 309:113–118

    PubMed  CAS  Google Scholar 

  • Herron SR, Benen JA, Scavetta RD et al (2000) Structure and function of pectic enzymes: virulence factors of plant pathogens. Proc Natl Acad Sci USA 97:8762–8769

    PubMed  CAS  Google Scholar 

  • Hinsa SM, Espinosa-Urgel M, Ramos JL et al (2003) Transition from reversible to irreversible attachment during biofilm formation by Pseudomonas fluorescens WCS365 requires an ABC transporter and a large secreted protein. Mol Microbiol 49:905–918

    PubMed  CAS  Google Scholar 

  • Hubber AM, Sullivan JT, Ronson CW (2007) Symbiosis-induced cascade regulation of the Mesorhizobium loti R7A VirB/D4 type IV secretion system. Mol Plant Microbe Interact 20:255–261

    PubMed  CAS  Google Scholar 

  • Hurek T, Reinhold-Hurek B, Van Montagu M et al (1994) Root colonization and systemic spreading of Azoarcus sp. strain BH72 in grasses. J Bacteriol 176:1913–1923

    PubMed  CAS  Google Scholar 

  • Iniguez AL, Dong Y, Carter HD et al (2005) Regulation of enteric endophytic bacterial colonization by plant defenses. Mol Plant Microbe Interact 18:169–178

    PubMed  CAS  Google Scholar 

  • Jennings D, Daub M, Pharr D et al (2002) Constitutive expression of a celery mannitol dehydrogenase in tobacco enhances resistance to the mannitol‐secreting fungal pathogen Alternaria alternata. Plant J 32:41–49

    PubMed  CAS  Google Scholar 

  • Juhas M, van der Meer JR, Gaillard M et al (2009) Genomic islands: tools of bacterial horizontal gene transfer and evolution. FEMS Microbiol Rev 33:376–393

    PubMed  CAS  Google Scholar 

  • Kaneko T, Nakamura Y, Sato S et al (2000) Complete genome structure of the nitrogen-fixing symbiotic bacterium Mesorhizobium loti. DNA Res 7:331–338

    PubMed  CAS  Google Scholar 

  • Kaneko T, Nakamura Y, Sato S et al (2002) Complete genomic sequence of nitrogen-fixing symbiotic bacterium Bradyrhizobium japonicum USDA110. DNA Res 9:189–197

    PubMed  Google Scholar 

  • Kaneko T, Minamisawa K, Isawa T et al (2010) Complete genomic structure of the cultivated rice endophyte Azospirillum sp. B510. DNA Res 17:37–50

    PubMed  CAS  Google Scholar 

  • Kanzler BE, Pfannes KR, Vogl K et al (2005) Molecular characterization of the nonphotosynthetic partner bacterium in the consortium “Chlorochromatium aggregatum”. Appl Environ Microbiol 71:7434–7441

    PubMed  CAS  Google Scholar 

  • Kitano H (2007) Towards a theory of biological robustness. Mol Syst Biol 3:137

    PubMed  Google Scholar 

  • Kobayashi DY, Reedy RM, Bick J et al (2002) Characterization of a chitinase gene from Stenotrophomonas maltophilia strain 34 S1 and its involvement in biological control. Appl Environ Microbiol 68:1047–1054

    PubMed  CAS  Google Scholar 

  • Krause A, Ramakumar A, Bartels D et al (2006) Complete genome of the mutualistic, N2-fixing grass endophyte Azoarcus sp. strain BH72. Nat Biotechnol 24:1385–1391

    PubMed  CAS  Google Scholar 

  • Lapierre P, Gogarten JP (2009) Estimating the size of the bacterial pan-genome. Trends Genet 25:107–110

    PubMed  CAS  Google Scholar 

  • Lee S, Flores-Encarnacion M, Contreras-Zentella M et al (2004) Indole-3-acetic acid biosynthesis is deficient in Gluconacetobacter diazotrophicus strains with mutations in cytochrome c biogenesis genes. J Bacteriol 186:5384–5391

    PubMed  CAS  Google Scholar 

  • Leiman PG, Basler M, Ramagopal UA et al (2009) Type VI secretion apparatus and phage tail-associated protein complexes share a common evolutionary origin. Proc Natl Acad Sci USA 106:4154–4159

    PubMed  CAS  Google Scholar 

  • Looney W, Narita M, Mühlemann K (2009) Stenotrophomonas maltophilia: an emerging opportunist human pathogen. Lancet Infect Dis 9:312–323

    PubMed  CAS  Google Scholar 

  • Lukjancenko O, Wassenaar TM, Ussery DW (2010) Comparison of 61 sequenced Escherichia coli genomes. Microb Ecol 60:708–720

    PubMed  CAS  Google Scholar 

  • Madmony A, Chernin L, Pleban S et al (2005) Enterobacter cloacae, an obligatory endophyte of pollen grains of Mediterranean pines. Folia Microbiol Praha 50:209–216

    PubMed  CAS  Google Scholar 

  • Manulis S, Haviv-Chesner A, Brandl MT et al (1998) Differential involvement of indole-3-acetic acid biosynthetic pathways in pathogenicity and epiphytic fitness of Erwinia herbicola pv. gypsophilae. Mol Plant Microbe Interact 11:634–642

    PubMed  CAS  Google Scholar 

  • McCann HC, Guttman DS (2008) Evolution of the type III secretion system and its effectors in plant-microbe interactions. New Phytol 177:33–47

    PubMed  CAS  Google Scholar 

  • Mehnaz S, Lazarovits G (2006) Inoculation effects of Pseudomonas putida, Gluconacetobacter azotocaptans, and Azospirillum lipoferum on corn plant growth under greenhouse conditions. Microb Ecol 51:326–335

    PubMed  Google Scholar 

  • Miller MB, Bassler BL (2001) Quorum sensing in bacteria. Annu Rev Microbiol 55:165–199

    PubMed  CAS  Google Scholar 

  • Moran NA (2003) Tracing the evolution of gene loss in obligate bacterial symbionts. Curr Opin Microbiol 6:512–518

    PubMed  CAS  Google Scholar 

  • Moran NA, Plague GR (2004) Genomic changes following host restriction in bacteria. Curr Opin Genet Dev 14:627–633

    PubMed  CAS  Google Scholar 

  • Morgan PW, Drew MC (1997) Ethylene and plant responses to stress. Physiol Plant 100:620–630

    CAS  Google Scholar 

  • Mota LJ, Sorg I, Cornelis GR (2005) Type III secretion: the bacteria-eukaryotic cell express. FEMS Microbiol Lett 252:1–10

    PubMed  CAS  Google Scholar 

  • Navarro L, Dunoyer P, Jay F et al (2006) A plant miRNA contributes to antibacterial resistance by repressing auxin signaling. Science 312:436–439

    PubMed  CAS  Google Scholar 

  • Nystedt B, Frank AC, Thollesson M et al (2008) Diversifying selection and concerted evolution of a type IV secretion system in Bartonella. Mol Biol Evol 25(2):287–300

    PubMed  CAS  Google Scholar 

  • O’Sullivan DJ, O’Gara F (1992) Traits of fluorescent Pseudomonas spp. involved in suppression of plant root pathogens. Microbiol Rev 56:662–676

    PubMed  Google Scholar 

  • Ochman H, Moran NA (2001) Genes lost and genes found: evolution of bacterial pathogenesis and symbiosis. Science 292:1096–1099

    PubMed  CAS  Google Scholar 

  • Perrig D, Boiero ML, Masciarelli OA et al (2007) Plant-growth-promoting compounds produced by two agronomically important strains of Azospirillum brasilense, and implications for inoculant formulation. Appl Microbiol Biotechnol 75:1143–1150

    PubMed  CAS  Google Scholar 

  • Perrine FM, Hocart CH, Hynes MF et al (2005) Plasmid-associated genes in the model micro-symbiont Sinorhizobium meliloti 1021 affect the growth and development of young rice seedlings. Env Microbiol 7:1826–1838

    CAS  Google Scholar 

  • Philippot L, Bru D, Saby NP et al (2009) Spatial patterns of bacterial taxa in nature reflect ecological traits of deep branches of the 16 S rRNA bacterial tree. Env Microbiol 11: 3096–3104

    CAS  Google Scholar 

  • Philippot L, Andersson SG, Battin TJ et al (2010) The ecological coherence of high bacterial taxonomic ranks. Nat Rev 8:523–529

    CAS  Google Scholar 

  • Ping L, Boland W (2004) Signals from the underground: bacterial volatiles promote growth in Arabidopsis. Trends Plant Sci 9:263–266

    PubMed  CAS  Google Scholar 

  • Preston GM, Bertrand N, Rainey PB (2001) Type III secretion in plant growth-promoting Pseudomonas fluorescens SBW25. Mol Microbiol 41:999–1014

    PubMed  CAS  Google Scholar 

  • Ramsay JP, Sullivan JT, Stuart GS et al (2006) Excision and transfer of the Mesorhizobium loti R7A symbiosis island requires an integrase IntS, a novel recombination directionality factor RdfS, and a putative relaxase RlxS. Mol Microbiol 62:723–734

    PubMed  CAS  Google Scholar 

  • Ran L, Larsson J, Vigil-Stenman T et al (2010) Genome erosion in a nitrogen-fixing vertically transmitted endosymbiotic multicellular cyanobacterium. PLoS ONE 5:e11486

    PubMed  Google Scholar 

  • Reinhold-Hurek B, Hurek T (1998a) Interactions of gramineous plants with Azoarcus spp. and other diazotrophs: identification, localization and perspectives to study their function. Crit Rev Plant Sci 17:29–54

    Google Scholar 

  • Reinhold-Hurek B, Hurek T (1998b) Life in grasses: diazotrophic endophytes. Trends Microbiol 6:139–144

    PubMed  CAS  Google Scholar 

  • Reinhold-Hurek B, Maes T, Gemmer S et al (2006) An endoglucanase is involved in infection of rice roots by the not-cellulose-metabolizing endophyte Azoarcus sp. strain BH72. Mol Plant Microbe Interact 19:181–188

    PubMed  CAS  Google Scholar 

  • Rodriguez-Navarro DN, Dardanelli MS, Ruiz-Sainz JE (2007) Attachment of bacteria to the roots of higher plants. FEMS Microbiol Lett 272:127–136

    PubMed  CAS  Google Scholar 

  • Rosenblueth M, Martinez-Romero E (2006) Bacterial endophytes and their interactions with hosts. Mol Plant Microbe Interact 19:827–837

    PubMed  CAS  Google Scholar 

  • Rothballer M, Eckert B, Schmid M et al (2008) Endophytic root colonization of gramineous plants by Herbaspirillum frisingense. FEMS Microbiol Ecol 66:85–95

    PubMed  CAS  Google Scholar 

  • Ryan RP, Germaine K, Franks A et al (2008) Bacterial endophytes: recent developments and applications. FEMS Microbiol Lett 278(1):1–9

    PubMed  CAS  Google Scholar 

  • Ryu C-M, Farag MA, Hu C-H et al (2003) Bacterial volatiles promote growth in Arabidopsis. Proc Natl Acad Sci USA 100:4927–4932

    PubMed  CAS  Google Scholar 

  • Ryu C-M, Farag MA, Hu C-H et al (2004) Bacterial volatiles induce systemic resistance in Arabidopsis. Plant Physiol 134:1017–1026

    PubMed  CAS  Google Scholar 

  • Sanchez-Contreras M, Bauer WD, Gao M et al (2007) Quorum-sensing regulation in rhizobia and its role in symbiotic interactions with legumes. Philos Trans R Soc Lond B Biol Sci 362: 1149–1163

    PubMed  CAS  Google Scholar 

  • Sandkvist M (2001) Biology of type II secretion. Mol Microbiol 40:271–283

    PubMed  CAS  Google Scholar 

  • Saravanan VS, Kalaiarasan P, Madhaiyan M et al (2007) Solubilization of insoluble zinc compounds by Gluconacetobacter diazotrophicus and the detrimental action of zinc ion (Zn2+) and zinc chelates on root knot nematode Meloidogyne incognita. Lett Appl Microbiol 44: 235–241

    PubMed  CAS  Google Scholar 

  • Schippers B, Bakker AW, Bakker PA (1987) Interactions of deleterious and beneficial rhizosphere microorganisms and the effect of cropping practises. Ann Rev Phytopathol 25:339–358

    Google Scholar 

  • Schwarz S, Hood RD, Mougous JD (2010a) What is type VI secretion doing in all those bugs? Trends Microbiol 18:531–537

    PubMed  CAS  Google Scholar 

  • Schwarz S, West TE, Boyer F et al (2010b) Burkholderia type VI secretion systems have distinct roles in eukaryotic and bacterial cell interactions. PLoS Pathog 6:e1001068

    PubMed  Google Scholar 

  • Sessitsch A, Reiter B, Berg G (2004) Endophytic bacterial communities of field-grown potato plants and their plant-growth-promoting and antagonistic abilities. Can J Microbiol 50: 239–249

    PubMed  CAS  Google Scholar 

  • Siddikee MA, Glick BR, Chauhan PS et al. (2011) Enhancement of growth and salt tolerance of red pepper seedlings (Capsicum annuum L.) by regulating stress ethylene synthesis with halotolerant bacteria containing 1-aminocyclopropane-1-carboxylic acid deaminase activity. Plant Physiol Biochem. In press

    Google Scholar 

  • Simon C, Daniel R (2011) Metagenomic analyses: past and future trends. Appl Environ Microbiol 77:1153–1161

    PubMed  Google Scholar 

  • Spaepen S, Vanderleyden J (2010) Auxin and Plant-Microbe Interactions. Cold Spring Harb Perspect Biol. In press

    Google Scholar 

  • Spaepen S, Vanderleyden J, Remans R (2007) Indole-3-acetic acid in microbial and microorganism-plant signaling. FEMS Microbiol Rev 31:425–428

    PubMed  CAS  Google Scholar 

  • Sun Y, Cheng Z, Glick BR (2009) The presence of a 1-aminocyclopropane-1-carboxylate (ACC) deaminase deletion mutation alters the physiology of the endophytic plant growth-promoting bacterium Burkholderia phytofirmans PsJN. FEMS Microbiol Lett 296:131–136

    PubMed  CAS  Google Scholar 

  • Suzuki S, He Y, Oyaizu H (2003) Indole-3-acetic acid production in Pseudomonas fluorescens HP72 and its association with suppression of creeping bentgrass brown patch. Curr Microbiol 47:138–143

    PubMed  CAS  Google Scholar 

  • Taghavi S, Garafola C, Monchy S et al (2009) Genome survey and characterization of endophytic bacteria exhibiting a beneficial effect on growth and development of poplar trees. Appl Environ Microbiol 75:748–757

    PubMed  CAS  Google Scholar 

  • Taghavi S, van der Lelie D, Hoffman A et al (2010) Genome sequence of the plant growth promoting endophytic bacterium Enterobacter sp. 638. PLoS Genet 6:e1000943

    PubMed  Google Scholar 

  • Tettelin H, Riley D, Cattuto C et al (2008) Comparative genomics: the bacterial pan-genome. Curr Opin Microbiol 11:472–477

    PubMed  CAS  Google Scholar 

  • Toft C, Andersson SG (2010) Evolutionary microbial genomics: insights into bacterial host adaptation. Nat Rev Genet 11:465–475

    PubMed  CAS  Google Scholar 

  • Van Brussel AA, Zaat SA, Cremers HC et al (1986) Role of plant root exudate and Sym plasmid-localized nodulation genes in the synthesis by Rhizobium leguminosarum of Tsr factor, which causes thick and short roots on common vetch. J Bacteriol 165:517–522

    PubMed  Google Scholar 

  • van der Lelie D, Taghavi S, Monchy S et al (2009) Poplar and its bacterial endophytes: coexistence and harmony. Crit Rev Plant Sci 28:346–358

    Google Scholar 

  • van Loon LC, Bakker PA, van der Heijdt WH et al (2008) Early responses of tobacco suspension cells to rhizobacterial elicitors of induced systemic resistance. Mol Plant Microbe Interact 21:1609–1621

    PubMed  Google Scholar 

  • Vayssier-Taussat M, Le Rhun D, Deng HK et al (2010) The Trw type IV secretion system of Bartonella mediates host-specific adhesion to erythrocytes. PLoS Pathog 6:e1000946

    PubMed  Google Scholar 

  • Vial L, Cuny C, Gluchoff-Fiasson K et al (2006) N-acyl-homoserine lactone-mediated quorum-sensing in Azospirillum: an exception rather than a rule. FEMS Microbiol Ecol 58:155–168

    PubMed  CAS  Google Scholar 

  • Wooley JC, Godzik A, Friedberg I (2010) A primer on metagenomics. PLoS Comput Biol 6:e1000667

    PubMed  Google Scholar 

  • Woyke T, Tighe D, Mavromatis K et al (2010) One bacterial cell, one complete genome. PLoS ONE 5:e10314

    PubMed  Google Scholar 

  • Wu X, Monchy S, Taghavi S et al (2011) Comparative genomics and functional analysis of niche-specific adaptation in Pseudomonas putida. FEMS Microbiol Rev 35:299–323

    PubMed  CAS  Google Scholar 

  • Zeidler D, Zähringer U, Gerber I et al (2004) Innate immunity in Arabidopsis thaliana: lipopolysaccharides activate nitric oxide synthase (NOS) and induce defense genes. Proc Natl Acad Sci USA 101:15811–15816

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by UC Merced startup funds.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Carolin Frank .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Frank, A.C. (2011). The Genomes of Endophytic Bacteria. In: Pirttilä, A., Frank, A. (eds) Endophytes of Forest Trees. Forestry Sciences, vol 80. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-1599-8_7

Download citation

Publish with us

Policies and ethics

Navigation

-