Skip to main content
Log in

Possible involvement of genotoxic mechanisms in estragole-induced hepatocarcinogenesis in rats

  • Genotoxicity and Carcinogenicity
  • Published:
Archives of Toxicology Aims and scope Submit manuscript

Abstract

Estragole (ES) is a natural organic compound used frequently as a flavoring food additive. Although it has been reported to be tumorigenic and induce DNA adducts in the mouse liver, there have been no reports regarding ES hepatocarcinogenicity in rats. In the current study, we therefore examined potent carcinogenicity, DNA adduct formation and in vivo genotoxicity of ES in the livers of wild and reporter gene-carrying F344 rats. Males were administered 600 mg/kg bw ES by gavage and sequentially sacrificed at weeks 4, 8 and 16 for GST-P and PCNA immunohistochemistry and measurement of ES-specific DNA adducts by LC-MS/MS in the livers. GST-P-positive foci increased with time in ES-treated rats from week 4, PCNA-labeling indices being similarly elevated at both weeks 4 and 8. ES-specific DNA adducts such as ES-3′-N 2-dG, 3′-8-dG and 3′-N 6-dA were consistently detected, particularly at week 4. In a second study, male F344 gpt delta rats were administered 0, 22, 66, 200 or 600 mg/kg bw ES for 4 weeks. Gpt mutant frequency in the liver was increased in a dose-dependent manner, with significance at 200 and 600 mg/kg bw in good correlation with PCNA-labeling indices. Mutation spectra analysis showed A:T to G:C transitions to be predominantly increased in line with the formation of ES-3′-N 6-dA or 3′-8-dG. These results indicate that ES could be a possible genotoxic hepatocarcinogen in the rat, at least when given at high doses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • de Vries A, Dollé ME, Broekhof JL, Muller JJ, Kroese ED, van Kreijl CF, Capel PJ, Vijg J, van Steeg H (1997) Induction of DNA adducts and mutations in spleen, liver and lung of XPA-deficient/lacZ transgenic mice after oral treatment with benzo[a]pyrene: correlation with tumour development. Carcinogenesis 18:2327–2332

    Article  PubMed  Google Scholar 

  • Drinkwater NR, Miller EC, Miller JA, Pitot HC (1976) Hepatocarcinogenicity of estragole (1-allyl-4-methoxybenzene) and 1′-hydroxyestragole in the mouse and mutagenicity of 1′-acetoxyestragole in bacteria. J Natl Cancer Inst 57:1323–1331

    PubMed  CAS  Google Scholar 

  • Fennell TR, Wiseman RW, Miller JA, Miller EC (1985) Major role of hepatic sulfotransferase activity in the metabolic activation, DNA adduct formation, and carcinogenicity of 1′-hydroxy-2′,3′-dehydroestragole in infant male C57BL/6J × C3H/HeJ F1 mice. Cancer Res 45:5310–5320

    PubMed  CAS  Google Scholar 

  • Fukushima S, Kakehashi A, Wei M, Wanibuchi H (2009) Existence of a threshold for the genotoxic carcinogens: evidence from mechanism-based carcinogenicity studies. Genes Environ 31:33–36

    Article  CAS  Google Scholar 

  • Ishii Y, Suzuki Y, Hibi D, Jin M, Fukuhara K, Umemura T, Nishikawa A (2011) Detection and quantification of specific DNA adducts by liquid chromatography-tandem mass spectrometry in the livers of rats given estragole at the carcinogenic dose. Chem Res Toxicol 24:532–541

    Article  PubMed  CAS  Google Scholar 

  • Ito N, Tsuda H, Tatematsu M, Inoue T, Tagawa Y, Aoki T, Uwagawa S, Kagawa M, Ogiso T, Masui T, Imaida K, Fukushima S, Asamoto M (1988) Enhancing effect of various hepatocarcinogens on induction of preneoplastic glutathione S-transferase placental form positive foci in rats—an approach for a new medium-term bioassay system. Carcinogenesis 9:387–394

    Article  PubMed  CAS  Google Scholar 

  • Kanki K, Nishikawa A, Masumura K, Umemura T, Imazawa T, Kitamura Y, Nohmi T, Hirose M (2005) In vivo mutational analysis of liver DNA in gpt delta transgenic rats treated with the hepatocarcinogens N-nitrosopyrrolidine, 2-amino-3-methylimidazo[4,5-f]quinoline, and di(2-ethylhexyl)phthalate. Mol Carcinog 42:9–17

    Article  PubMed  CAS  Google Scholar 

  • Kuraoka I (2008) Effects of DNA lesions on transcription elongation by RNA polymerases. Genes Environ 30:63–70

    Article  Google Scholar 

  • Miller EC, Swanson AB, Phillips DH, Fletcher TL, Liem A, Miller JA (1983) Structure-activity studies of the carcinogenicities in the mouse and rat of some naturally occurring and synthetic alkenylbenzene derivatives related to safrole and estragole. Cancer Res 43:1124–1134

    PubMed  CAS  Google Scholar 

  • National Toxicology Program (NTP) (2011) NTP 3-month toxicity studies of estragole (CAS no. 140-67-0) administered by gavage to F344/N rats and B6C3F1 mice. Toxicity report series no. 82. NIH publication no. 11-5966. U.S. Department of Health and Human Services, Public Health Service, National Institutes of Health, Research Triangle Park, NC

  • Nesslany F, Parent-Massin D, Marzin D (2010) Risk assessment of consumption of methylchavicol and tarragon: The genotoxic potential in vivo and in vitro. Mutat Res 696:1–9

    Article  PubMed  CAS  Google Scholar 

  • Nishikawa A, Umemure T, Ishii Y, Tasaki M, Okamura T, Inoue T, Masumura K, Nohmi T (2008) Possible approach to study mechanism of action of genotoxic carcinogens. Genes and Environ. 30:120–124

    Article  CAS  Google Scholar 

  • Nohmi T, Suzuki T, Masumura K (2000) Recent advances in the protocols of transgenic mouse mutation assays. Mutat Res 455:191–215

    Article  PubMed  CAS  Google Scholar 

  • OECD (2011) Test no. 488: transgenic rodent somatic and germ cell gene mutation assays, OECD Guidelines for the testing of chemicals, Section 4. OECD Publishing. doi:10.1787/9789264122819-en

  • Paini A, Punt A, Viton F, Scholz G, Delatour T, Marin-Kuan M, Schilter B, van Bladeren PJ, Rietjens IM (2010) A physiologically based biodynamic (PBBD) model for estragole DNA binding in rat liver based on in vitro kinetic data and estragole DNA adduct formation in primary hepatocytes. Toxicol Appl Pharmacol 245:57–66

    Article  PubMed  CAS  Google Scholar 

  • Phillips DH, Miller JA, Miller EC, Adams B (1981) Structures of the DNA adducts formed in mouse liver after administration of the proximate hepatocarcinogen 1′-hydroxyestragole. Cancer Res 41:176–186

    PubMed  CAS  Google Scholar 

  • Phillips DH, Reddy MV, Randerath K (1984) 32P-post-labelling analysis of DNA adducts formed in the livers of animals treated with safrole, estragole and other naturally-occurring alkenylbenzenes. II. Newborn male B6C3F1 mice. Carcinogenesis 5:1623–1628

    Article  PubMed  CAS  Google Scholar 

  • Punt A, Delatour T, Scholz G, Schilter B, van Bladeren PJ, Rietjens IM (2007) Tandem mass spectrometry analysis of N 2-(trans-isoestragol-3′-yl)-2′-deoxyguanosine as a strategy to study species differences in sulfotransferase conversion of the proximate carcinogen 1′-hydroxyestragole. Chem Res Toxicol 20:991–998

    Article  PubMed  CAS  Google Scholar 

  • Punt A, Paini A, Boersma MG, Freidig AP, Delatour T, Scholz G, Schilter B, van Bladeren PJ, Rietjens IM (2009) Use of physiologically based biokinetic (PBBK) modeling to study estragole bioactivation and detoxification in humans as compared with male rats. Toxicol Sci 110:255–269

    Article  PubMed  CAS  Google Scholar 

  • Randerath K, Haglund RE, Phillips DH, Reddy MV (1984) 32P-post-labelling analysis of DNA adducts formed in the livers of animals treated with safrole, estragole and other naturally-occurring alkenylbenzenes. I. Adult female CD-1 mice. Carcinogenesis 5:1613–1622

    Article  PubMed  CAS  Google Scholar 

  • Rietjens IM, Boersma MG, van der Woude H, Jeurissen SM, Schutte ME, Alink GM (2005) Flavonoids and alkenylbenzenes: mechanisms of mutagenic action and carcinogenic risk. Mutat Res 574:124–138

    Article  PubMed  CAS  Google Scholar 

  • Scientific Committee on Food (SCF) (2001) Opinion of the scientific committee on food on estragole (1-allyl-4-methyxybenzene). Available at: http://ec.europa.eu/food/fs/sc/scf/out104_en.pdf

  • Sekizawa J, Shibamoto T (1982) Genotoxicity of safrole-related chemicals in microbial test systems. Mutat Res 101:127–140

    Article  PubMed  CAS  Google Scholar 

  • Singh R, Farmer PB (2006) Liquid chromatography-electrospray ionization-mass spectrometry: the future of DNA adduct detection. Carcinogenesis 27:178–196

    Article  PubMed  CAS  Google Scholar 

  • Smith RL, Adams TB, Doull J, Feron VJ, Goodman JI, Marnett LJ, Portoghese PS, Waddell WJ, Wagner BM, Rogers AE, Caldwell J, Sipes IG (2002) Safety assessment of allylalkoxybenzene derivatives used as flavouring substances—methyl eugenol and estragole. Food Chem Toxicol 40:851–870

    Article  PubMed  CAS  Google Scholar 

  • Swanson AB, Chambliss DD, Blomquist JC, Miller EC, Miller JA (1979) The mutagenicities of safrole, estragole, eugenol, trans-anethole, and some of their known or possible metabolites for Salmonella typhimurium mutants. Mutat Res 60:143–153

    Article  PubMed  CAS  Google Scholar 

  • Tsuda H, Fukushima S, Wanibuchi H, Morimura K, Nakae D, Imaida K, Tatematsu M, Hirose M, Wakabayashi K, Moore MA (2003) Value of GST-P positive preneoplastic hepatic foci in dose-response studies of hepatocarcinogenesis: evidence for practical thresholds with both genotoxic and nongenotoxic carcinogens. A review of recent work. Toxicol Pathol 31:80–86

    PubMed  CAS  Google Scholar 

  • Umemura T, Kuroiwa Y, Tasaki M, Okamura T, Ishii Y, Kodama Y, Nohmi T, Mitsumori K, Nishikawa A, Hirose M (2007) Detection of oxidative DNA damage, cell proliferation and in vivo mutagenicity induced by dicyclanil, a non-genotoxic carcinogen, using gpt delta mice. Mutat Res 633:46–54

    Article  PubMed  CAS  Google Scholar 

  • Wiseman RW, Fennell TR, Miller JA, Miller EC (1985) Further characterization of the DNA adducts formed by electrophilic esters of the hepatocarcinogens 1′-hydroxysafrole and 1′-hydroxyestragole in vitro and in mouse liver in vivo, including new adducts at C-8 and N-7 of guanine residues. Cancer Res 45:3096–3105

    PubMed  CAS  Google Scholar 

  • Wiseman RW, Miller EC, Miller JA, Liem A (1987) Structure-activity studies of the hepatocarcinogenicities of alkenylbenzene derivatives related to estragole and safrole on administration to preweanling male C57BL/6 J x C3H/HeJ F1 mice. Cancer Res 47:2275–2283

    PubMed  CAS  Google Scholar 

  • Zeiger E, Anderson B, Haworth S, Lawlor T, Mortelmans K, Speck W (1987) Salmonella mutagenicity tests: III. Results from the testing of 255 chemicals. Environ Mutagen 9:1–110

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Aki Kijima, Yoshimi Komatu and Ayako Kaneko for expert technical assistance in carrying out the animal experiments and processing histological materials. This work was supported by a Grant-in-Aid for Research on Food Safety from the Ministry of Health, Labour and Welfare of Japan.

Conflict of interest

We declare that we have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akiyoshi Nishikawa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Suzuki, Y., Umemura, T., Hibi, D. et al. Possible involvement of genotoxic mechanisms in estragole-induced hepatocarcinogenesis in rats. Arch Toxicol 86, 1593–1601 (2012). https://doi.org/10.1007/s00204-012-0865-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00204-012-0865-8

Keywords

Navigation

-