Skip to main content
Log in

Defective proteolytic systems in Mybpc3-targeted mice with cardiac hypertrophy

  • Original Contribution
  • Published:
Basic Research in Cardiology Aims and scope Submit manuscript

Abstract

Several lines of evidence suggest that alterations of the ubiquitin-proteasome system (UPS) and autophagy-lysosome pathway (ALP) may be involved in cardiac diseases. Little is known, however, in hypertrophic cardiomyopathy (HCM). This study studied these pathways in two mouse models of HCM that mainly differ by the presence or absence of truncated mutant proteins. Analyses were performed in homozygous Mybpc3-targeted knock-in (KI) mice, carrying a HCM mutation and exhibiting low levels of mutant cardiac myosin-binding protein C (cMyBP-C), and in Mybpc3-targeted knock-out (KO) mice expressing no cMyBP-C, thus serving as a model of pure cMyBP-C insufficiency. In the early postnatal development of cardiac hypertrophy, both models showed higher levels of ubiquitinated proteins and greater proteasomal activities. To specifically monitor the degradation capacity of the UPS with age, mice were crossed with transgenic mice that overexpress UbG76V-GFP. UbG76V-GFP protein levels were fourfold higher in 1-year-old KI, but not KO mice, suggesting a specific UPS impairment in mice expressing truncated cMyBP-C. Whereas protein levels of key ALP markers were higher, suggesting ALP activation in both mutant mice, their mRNA levels did not differ between the groups, underlying rather defective ALP-mediated degradation. Analysis of key proteins regulated in heart failure did not reveal specific alterations in KI and KO mice. Our data suggest (1) UPS activation in early postnatal development of cardiac hypertrophy, (2) specific UPS impairment in old KI mice carrying a HCM mutation, and (3) defective ALP as a common mechanism in genetically engineered mice with cardiac hypertrophy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Bahrudin U, Morisaki H, Morisaki T, Ninomiya H, Higaki K, Nanba E, Igawa O, Takashima S, Mizuta E, Miake J, Yamamoto Y, Shirayoshi Y, Kitakaze M, Carrier L, Hisatome I (2008) Ubiquitin-proteasome system impairment caused by a missense cardiac myosin-binding protein C mutation and associated with cardiac dysfunction in hypertrophic cardiomyopathy. J Mol Biol 384:896–907. doi:10.1016/j.jmb.2008.09.070

    Article  PubMed  CAS  Google Scholar 

  2. Balasubramanian S, Mani S, Shiraishi H, Johnston RK, Yamane K, Willey CD, Cooper IV G, Tuxworth WJ, Kuppuswamy D (2006) Enhanced ubiquitination of cytoskeletal proteins in pressure overloaded myocardium is accompanied by changes in specific E3 ligases. J Mol Cell Cardiol 41:669–679 doi:10.1016/j.yjmcc.2006.04.022

  3. Bardswell SC, Cuello F, Rowland AJ, Sadayappan S, Robbins J, Gautel M, Walker JW, Kentish JC, Avkiran M (2010) Distinct sarcomeric substrates are responsible for protein kinase D-mediated regulation of cardiac myofilament Ca2+ sensitivity and cross-bridge cycling. J Biol Chem 285:5674–5682. doi:10.1074/jbc.M109.066456

    Article  PubMed  CAS  Google Scholar 

  4. Birks EJ, Latif N, Enesa K, Folkvang T, le Luong A, Sarathchandra P, Khan M, Ovaa H, Terracciano CM, Barton PJ, Yacoub MH, Evans PC (2008) Elevated p53 expression is associated with dysregulation of the ubiquitin-proteasome system in dilated cardiomyopathy. Cardiovasc Res 79:472–480. doi:10.1093/cvr/cvn083

    Article  PubMed  CAS  Google Scholar 

  5. Breitschopf K, Zeiher AM, Dimmeler S (2000) Ubiquitin-mediated degradation of the proapoptotic active form of bid: a functional consequence on apoptosis induction. J Biol Chem 275:21648–21652. doi:10.1074/jbc.M001083200

    Article  PubMed  CAS  Google Scholar 

  6. Carrier L, Bonne G, Bahrend E, Yu B, Richard P, Niel F, Hainque B, Cruaud C, Gary F, Labeit S, Bouhour JB, Dubourg O, Desnos M, Hagege AA, Trent RJ, Komajda M, Fiszman M, Schwartz K (1997) Organization and sequence of human cardiac myosin binding protein C gene (MYBPC3) and identification of mutations predicted to produce truncated proteins in familial hypertrophic cardiomyopathy. Circ Res 80:427–434

    PubMed  CAS  Google Scholar 

  7. Carrier L, Knoell R, Vignier N, Keller DI, Bausero P, Prudhon B, Isnard R, Ambroisine ML, Fiszman M, Ross J Jr, Schwartz K, Chien KR (2004) Asymmetric septal hypertrophy in heterozygous cMyBP-C null mice. Cardiovasc Res 63:293–304. doi:10.1016/j.cardiores.2004.04.009

    Article  PubMed  CAS  Google Scholar 

  8. Carrier L, Schlossarek S, Willis MS, Eschenhagen T (2010) The ubiquitin-proteasome system and nonsense-mediated mRNA decay in hypertrophic cardiomyopathy. Cardiovasc Res 85:330–338. doi:10.1093/cvr/cvp247

    Article  PubMed  CAS  Google Scholar 

  9. Chen Q, Liu JB, Horak KM, Zheng H, Kumarapeli AR, Li J, Li F, Gerdes AM, Wawrousek EF, Wang X (2005) Intrasarcoplasmic amyloidosis impairs proteolytic function of proteasomes in cardiomyocytes by compromising substrate uptake. Circ Res 97:1018–1026. doi:10.1161/01.RES.0000189262.92896.0b

    Article  PubMed  CAS  Google Scholar 

  10. Cuello F, Bardswell SC, Haworth RS, Ehler E, Sadayappan S, Kentish JC, Avkiran M (2011) Novel role for p90 ribosomal S6 kinase in the regulation of cardiac myofilament phosphorylation. J Biol Chem 286:5300–5310. doi:10.1074/jbc.M110.202713

    Article  PubMed  CAS  Google Scholar 

  11. Dantuma NP, Lindsten K, Glas R, Jellne M, Masucci MG (2000) Short-lived green fluorescent proteins for quantifying ubiquitin/proteasome-dependent proteolysis in living cells. Nat Biotechnol 18:538–543. doi:10.1038/75406

    Article  PubMed  CAS  Google Scholar 

  12. De Meyer GR, Martinet W (2009) Autophagy in the cardiovascular system. Biochim Biophys Acta 1793:1485–1495. doi:10.1016/j.bbamcr.2008.12.011

    Article  PubMed  Google Scholar 

  13. Depre C, Wang Q, Yan L, Hedhli N, Peter P, Chen L, Hong C, Hittinger L, Ghaleh B, Sadoshima J, Vatner DE, Vatner SF, Madura K (2006) Activation of the cardiac proteasome during pressure overload promotes ventricular hypertrophy. Circulation 114:1821–1828. doi:10.1161/CIRCULATIONAHA.106.637827

    Article  PubMed  CAS  Google Scholar 

  14. Ding WX, Ni HM, Gao W, Yoshimori T, Stolz DB, Ron D, Yin XM (2007) Linking of autophagy to ubiquitin-proteasome system is important for the regulation of endoplasmic reticulum stress and cell viability. Am J Pathol 171:513–524. doi:10.2353/ajpath.2007.070188

    Article  PubMed  CAS  Google Scholar 

  15. El-Armouche A, Pohlmann L, Schlossarek S, Starbatty J, Yeh YH, Nattel S, Dobrev D, Eschenhagen T, Carrier L (2007) Decreased phosphorylation levels of cardiac myosin-binding protein-C in human and experimental heart failure. J Mol Cell Cardiol 43:223–229. doi:10.1016/j.yjmcc.2007.05.003

    Article  PubMed  CAS  Google Scholar 

  16. Flavigny J, Souchet M, Sebillon P, Berrebi-Bertrand I, Hainque B, Mallet A, Bril A, Schwartz K, Carrier L (1999) COOH-terminal truncated cardiac myosin-binding protein C mutants resulting from familial hypertrophic cardiomyopathy mutations exhibit altered expression and/or incorporation in fetal rat cardiomyocytes. J Mol Biol 294:443–456. doi:10.1006/jmbi.1999.3276S0022-2836(99)93276-X

    Article  PubMed  CAS  Google Scholar 

  17. Gautel M, Zuffardi O, Freiburg A, Labeit S (1995) Phosphorylation switches specific for the cardiac isoform of myosin binding protein-C: a modulator of cardiac contraction? EMBO J 14:1952–1960

    PubMed  CAS  Google Scholar 

  18. Glickman MH, Ciechanover A (2002) The ubiquitin-proteasome proteolytic pathway: destruction for the sake of construction. Physiol Rev 82:373–428. doi:10.1152/physrev.00027.2001

    PubMed  CAS  Google Scholar 

  19. Hedhli N, Wang L, Wang Q, Rashed E, Tian Y, Sui X, Madura K, Depre C (2008) Proteasome activation during cardiac hypertrophy by the chaperone H11 Kinase/Hsp22. Cardiovasc Res 77:497–505. doi:10.1093/cvr/cvm054

    Article  PubMed  CAS  Google Scholar 

  20. Helin K (1998) Regulation of cell proliferation by the E2F transcription factors. Curr Opin Genet Dev 8:28–35. doi:10.1016/S0959-437X(98)80058-0

    Article  PubMed  CAS  Google Scholar 

  21. King RW, Deshaies RJ, Peters JM, Kirschner MW (1996) How proteolysis drives the cell cycle. Science 274:1652–1659

    Article  PubMed  CAS  Google Scholar 

  22. Kirkin V, Dikic I (2007) Role of ubiquitin- and Ubl-binding proteins in cell signaling. Curr Opin Cell Biol 19:199–205. doi:10.1016/j.ceb.2007.02.002

    Article  PubMed  CAS  Google Scholar 

  23. Kirkin V, McEwan DG, Novak I, Dikic I (2009) A role for ubiquitin in selective autophagy. Mol Cell 34:259–269. doi:10.1016/j.molcel.2009.04.026

    Article  PubMed  CAS  Google Scholar 

  24. Kooij V, Boontje N, Zaremba R, Jaquet K, dos Remedios C, Stienen GJ, van der Velden J (2010) Protein kinase C alpha and epsilon phosphorylation of troponin and myosin binding protein C reduce Ca2+ sensitivity in human myocardium. Basic Res Cardiol 105:289–300. doi:10.1007/s00395-009-0053-z

    Article  PubMed  CAS  Google Scholar 

  25. Kostin S, Pool L, Elsasser A, Hein S, Drexler HC, Arnon E, Hayakawa Y, Zimmermann R, Bauer E, Klovekorn WP, Schaper J (2003) Myocytes die by multiple mechanisms in failing human hearts. Circ Res 92:715–724. doi:10.1161/01.RES.0000067471.95890.5C

    Article  PubMed  CAS  Google Scholar 

  26. Levine B, Kroemer G (2008) Autophagy in the pathogenesis of disease. Cell 132:27–42. doi:10.1016/j.cell.2007.12.018

    Article  PubMed  CAS  Google Scholar 

  27. Li B, Dou QP (2000) Bax degradation by the ubiquitin/proteasome-dependent pathway: involvement in tumor survival and progression. Proc Natl Acad Sci USA 97:3850–3855. doi:10.1073/pnas.070047997

    Article  PubMed  CAS  Google Scholar 

  28. Li HH, Kedar V, Zhang C, McDonough H, Arya R, Wang DZ, Patterson C (2004) Atrogin-1/muscle atrophy F-box inhibits calcineurin-dependent cardiac hypertrophy by participating in an SCF ubiquitin ligase complex. J Clin Invest 114:1058–1071

    PubMed  CAS  Google Scholar 

  29. Li J, Horak KM, Su H, Sanbe A, Robbins J, Wang X (2011) Enhancement of proteasomal function protects against cardiac proteinopathy and ischemia/reperfusion injury in mice. J Clin Invest 121:3689–3700. doi:10.1172/JCI45709

    Article  PubMed  CAS  Google Scholar 

  30. Lindsten K, Menendez-Benito V, Masucci MG, Dantuma NP (2003) A transgenic mouse model of the ubiquitin/proteasome system. Nat Biotechnol 21:897–902

    Article  PubMed  CAS  Google Scholar 

  31. Marston S, Copeland O, Jacques A, Livesey K, Tsang V, McKenna WJ, Jalilzadeh S, Carballo S, Redwood C, Watkins H (2009) Evidence from human myectomy samples that MYBPC3 mutations cause hypertrophic cardiomyopathy through haploinsufficiency. Circ Res 105:219–222. doi:10.1161/CIRCRESAHA.109.202440

    Article  PubMed  CAS  Google Scholar 

  32. McClellan G, Kulikovskaya I, Winegrad S (2001) Changes in cardiac contractility related to calcium-mediated changes in phosphorylation of myosin-binding protein C. Biophys J 81:1083–1092

    Article  PubMed  CAS  Google Scholar 

  33. Mearini G, Gedicke C, Schlossarek S, Witt CC, Kramer E, Cao P, Gomes MD, Lecker SH, Labeit S, Willis MS, Eschenhagen T, Carrier L (2010) Atrogin-1 and MuRF1 regulate cardiac MyBP-C levels via different mechanisms. Cardiovasc Res 85:357–366. doi:10.1093/cvr/cvp348

    Article  PubMed  CAS  Google Scholar 

  34. Mearini G, Schlossarek S, Willis MS, Carrier L (2008) The ubiquitin-proteasome system in cardiac dysfunction. Biochim Biophys Acta 1782:749–763. doi:10.1016/j.bbadis.2008.06.009

    PubMed  CAS  Google Scholar 

  35. Mizushima N, Levine B, Cuervo AM, Klionsky DJ (2008) Autophagy fights disease through cellular self-digestion. Nature 451:1069–1075. doi:10.1038/nature06639

    Article  PubMed  CAS  Google Scholar 

  36. Moolman JA, Reith S, Uhl K, Bailey S, Gautel M, Jeschke B, Fischer C, Ochs J, McKenna WJ, Klues H, Vosberg HP (2000) A newly created splice donor site in exon 25 of the MyBP-C gene is responsible for inherited hypertrophic cardiomyopathy with incomplete disease penetrance. Circulation 101:1396–1402

    PubMed  CAS  Google Scholar 

  37. Palombella VJ, Rando OJ, Goldberg AL, Maniatis T (1994) The ubiquitin-proteasome pathway is required for processing the NF-kappa B1 precursor protein and the activation of NF-kappa B. Cell 78:773–785 pii:S0092-8674(94)90482-0

    Article  PubMed  CAS  Google Scholar 

  38. Pankiv S, Clausen TH, Lamark T, Brech A, Bruun JA, Outzen H, Overvatn A, Bjorkoy G, Johansen T (2007) p62/SQSTM1 binds directly to Atg8/LC3 to facilitate degradation of ubiquitinated protein aggregates by autophagy. J Biol Chem 282:24131–24145. doi:10.1074/jbc.M702824200

    Article  PubMed  CAS  Google Scholar 

  39. Predmore JM, Wang P, Davis F, Bartolone S, Westfall MV, Dyke DB, Pagani F, Powell SR, Day SM (2010) Ubiquitin proteasome dysfunction in human hypertrophic and dilated cardiomyopathies. Circulation 121:997–1004. doi:10.1161/CIRCULATIONAHA.109.904557

    Article  PubMed  CAS  Google Scholar 

  40. Razeghi P, Baskin KK, Sharma S, Young ME, Stepkowski S, Essop MF, Taegtmeyer H (2006) Atrophy, hypertrophy, and hypoxemia induce transcriptional regulators of the ubiquitin proteasome system in the rat heart. Biochem Biophys Res Commun 342:361–364. doi:10.1016/j.bbrc.2006.01.163

    Article  PubMed  CAS  Google Scholar 

  41. Richard P, Charron P, Carrier L, Ledeuil C, Cheav T, Pichereau C, Benaiche A, Isnard R, Dubourg O, Burban M, Gueffet JP, Millaire A, Desnos M, Schwartz K, Hainque B, Komajda M (2003) Hypertrophic Cardiomyopathy: Distribution of disease genes, spectrum of mutations and implications for molecular diagnosis strategy. Circulation 107:2227–2232. doi:10.1161/01.CIR.0000066323.15244.54

    Article  PubMed  Google Scholar 

  42. Rock KL, Gramm C, Rothstein L, Clark K, Stein R, Dick L, Hwang D, Goldberg AL (1994) Inhibitors of the proteasome block the degradation of most cell proteins and the generation of peptides presented on MHC class I molecules. Cell 78:761–771 pii:S0092-8674(94)90462-6

    Article  PubMed  CAS  Google Scholar 

  43. Rottbauer W, Gautel M, Zehelein J, Labeit S, Franz WM, Fischer C, Vollrath B, Mall G, Dietz R, Kubler W, Katus HA (1997) Novel splice donor site mutation in the cardiac myosin-binding protein-C gene in familial hypertrophic cardiomyopathy: characterization of cardiac transcript and protein. J Clin Invest 100:475–482. doi:10.1172/JCI119555

    Article  PubMed  CAS  Google Scholar 

  44. Sarikas A, Carrier L, Schenke C, Doll D, Flavigny J, Lindenberg KS, Eschenhagen T, Zolk O (2005) Impairment of the ubiquitin-proteasome system by truncated cardiac myosin binding protein C mutants. Cardiovasc Res 66:33–44. doi:10.1016/j.cardiores.2005.12.021

    Article  PubMed  CAS  Google Scholar 

  45. Schlossarek S, Carrier L (2011) The ubiquitin-proteasome system in cardiomyopathies. Curr Opin Cardiol 26:190–195. doi:10.1097/HCO.0b013e32834598fe

    Article  PubMed  Google Scholar 

  46. Schlossarek S, Mearini G, Carrier L (2011) Cardiac myosin-binding protein C in hypertrophic cardiomyopathy: mechanisms and therapeutic opportunities. J Mol Cell Cardiol 50:613–620. doi:10.1016/j.yjmcc.2011.01.014

    Article  PubMed  CAS  Google Scholar 

  47. Schlossarek S, Schuermann F, Mearini G, Geertz B, Eschenhagen T, Carrier L (2012) Adrenergic stress reveals septal hypertrophy and proteasome impairment in heterozygous Mybpc3-targeted knock-in mice. J Muscle Res Cell Motil doi:10.1007/s10974-011-9273-6 (in press)

  48. Su H, Wang X (2010) The ubiquitin-proteasome system in cardiac proteinopathy: a quality control perspective. Cardiovasc Res 85:253–262. doi:10.1093/cvr/cvp287

    Article  PubMed  CAS  Google Scholar 

  49. Tanida I (2011) Autophagosome formation and molecular mechanism of autophagy. Antioxid Redox Signal 14:2201–2214. doi:10.1089/ars.2010.3482

    Article  PubMed  CAS  Google Scholar 

  50. Tannous P, Zhu H, Nemchenko A, Berry JM, Johnstone JL, Shelton JM, Miller FJ Jr, Rothermel BA, Hill JA (2008) Intracellular protein aggregation is a proximal trigger of cardiomyocyte autophagy. Circulation 117:3070–3078. doi:10.1161/CIRCULATIONAHA.107.763870

    Article  PubMed  CAS  Google Scholar 

  51. Tsukamoto O, Minamino T, Okada K, Shintani Y, Takashima S, Kato H, Liao Y, Okazaki H, Asai M, Hirata A, Fujita M, Asano Y, Yamazaki S, Asanuma H, Hori M, Kitakaze M (2006) Depression of proteasome activities during the progression of cardiac dysfunction in pressure-overloaded heart of mice. Biochem Biophys Res Commun 340:1125–1133 doi:10.1016/j.bbrc.2005.12.120

    Google Scholar 

  52. van Dijk SJ, Dooijes D, Dos Remedios C, Michels M, Lamers JM, Winegrad S, Schlossarek S, Carrier L, Ten Cate FJ, Stienen GJ, van der Velden J (2009) Cardiac myosin-binding protein C mutations and hypertrophic cardiomyopathy haploinsufficiency, deranged phosphorylation, and cardiomyocyte dysfunction. Circulation 119:1473–1483. doi:10.1161/CIRCULATIONAHA.108.838672

    Article  PubMed  Google Scholar 

  53. Vignier N, Schlossarek S, Fraysse B, Mearini G, Kramer E, Pointu H, Mougenot N, Guiard J, Reimer R, Hohenberg H, Schwartz K, Vernet M, Eschenhagen T, Carrier L (2009) Nonsense-mediated mRNA decay and ubiquitin-proteasome system regulate cardiac myosin-binding protein C mutant levels in cardiomyopathic mice. Circ Res 105:239–248. doi:10.1161/CIRCRESAHA.109.201251

    Article  PubMed  CAS  Google Scholar 

  54. Voigt A, Bartel K, Egerer K, Trimpert C, Feist E, Gericke C, Kandolf R, Klingel K, Kuckelkorn U, Stangl K, Felix SB, Baumann G, Kloetzel PM, Staudt A (2010) Humoral anti-proteasomal autoimmunity in dilated cardiomyopathy. Basic Res Cardiol 105:9–18. doi:10.1007/s00395-009-0061-z

    Article  PubMed  CAS  Google Scholar 

  55. Voigt A, Trimpert C, Bartel K, Egerer K, Kuckelkorn U, Feist E, Gericke C, Klingel K, Kandolf R, Felix SB, Baumann G, Kloetzel PM, Stangl K, Staudt A (2010) Lack of evidence for a pathogenic role of proteasome-directed autoimmunity in dilated cardiomyopathy. Basic Res Cardiol 105:557–567. doi:10.1007/s00395-010-0096-1

    Article  PubMed  CAS  Google Scholar 

  56. Weekes J, Morrison K, Mullen A, Wait R, Barton P, Dunn MJ (2003) Hyperubiquitination of proteins in dilated cardiomyopathy. Proteomics 3:208–216. doi:10.1002/(SICI)1522-2683(19990101)20:4/5<898:AID-ELPS898>3.0.CO;2-B

    Article  PubMed  CAS  Google Scholar 

  57. Yang Q, Sanbe A, Osinska H, Hewett TE, Klevitsky R, Robbins J (1999) In vivo modeling of myosin binding protein C familial hypertrophic cardiomyopathy. Circ Res 85:841–847

    PubMed  CAS  Google Scholar 

  58. Zheng Q, Li J, Wang X (2009) Interplay between the ubiquitin-proteasome system and autophagy in proteinopathies. Int J Physiol Pathophysiol Pharmacol 1:127–142

    PubMed  CAS  Google Scholar 

  59. Zheng Q, Wang X (2010) Autophagy and the ubiquitin-proteasome system in cardiac dysfunction. Panminerva Med 52:9–25 pii:R41102476

    PubMed  CAS  Google Scholar 

  60. Zhu H, Tannous P, Johnstone JL, Kong Y, Shelton JM, Richardson JA, Le V, Levine B, Rothermel BA, Hill JA (2007) Cardiac autophagy is a maladaptive response to hemodynamic stress. J Clin Invest 117:1782–1793. doi:10.1172/JCI27523

    Article  PubMed  CAS  Google Scholar 

  61. Zolk O, Schenke C, Sarikas A (2006) The ubiquitin-proteasome system: focus on the heart. Cardiovasc Res 70:410–421. doi:10.1016/j.cardiores.2005.12.021

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Nico Dantuma (Stockholm, Sweden) for providing the UbG76V-GFP transgenic mice, as well as Elisabeth Krämer and Birgit Geertz (Hamburg) for technical help. This work was supported by the sixth and seventh Framework Programs of the European Union (Marie Curie EXT-014051; Health-F2-2009-241577-Big-Heart project), the Deutsche Forschungsgemeinschaft (FOR-604-CA 618/1-1 and 1-2), and the Leducq Foundation (Research grant Nr. 11, CVD 04).

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lucie Carrier.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 64 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schlossarek, S., Englmann, D.R., Sultan, K.R. et al. Defective proteolytic systems in Mybpc3-targeted mice with cardiac hypertrophy. Basic Res Cardiol 107, 235 (2012). https://doi.org/10.1007/s00395-011-0235-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00395-011-0235-3

Keywords

Navigation

-