Skip to main content

Advertisement

Log in

(−)-Epigallocatechin-gallate (EGCG) stabilize the mitochondrial enzymes and inhibits the apoptosis in cigarette smoke-induced myocardial dysfunction in rats

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

The present study brings out the preventive role of (−)-epigallocatechin-gallate (EGCG) on cardiac mitochondrial metabolism and apoptosis in cigarette smoke (CS)-exposed rats. The CS-exposed rats showed significantly decreased activities of TCA cycle enzymes and mitochondrial enzymatic antioxidants, on the other hand, mitochondrial lipid peroxidation was increased and GSH level was decreased. Further, CS exposure was found to induce cardiac apoptosis through release of cytochrome c into the cytosol, cleavage of pro-caspase-3 to active caspase-3, up-regulation of pro-apoptotic (Bax) and down-regulation of antiapoptotic (Bcl-2) molecules. The CS-induced apoptosis was further confirmed by mitochondrial and nuclear ultra structural apoptotic features as evaluated by electron microscopic studies. EGCG supplementation shelters the activities of TCA cycle enzymes and antioxidant enzymes, with concomitant decrease in lipid peroxidation and increase in GSH level. EGCG administration inhibited apoptosis through the inhibition of cytochrome c release into cytosol, activation of pro-caspase-3, down regulation of Bax and significant up regulation of Bcl-2. EGCG reversed the ultra structural apoptotic alterations of mitochondria and nucleus. The present study has provided experimental evidences that the EGCG treatment enduring to cardio protection at mitochondrial level.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

CVD:

Cardiovascular disease

CS:

Cigarette smoke

EGCG:

(−)-Epigallocatechin-gallate

ROS:

Reactive oxygen species

References

  1. Goette A, Lendeckel U, Kuchenbecker A, Bukowska A, Peters B, Klein HU, Huth C, Rocken C (2007) Cigarette smoking induces atrial fibrosis in humans via nicotine. Heart 93(9):1056–1063

    Article  PubMed  CAS  Google Scholar 

  2. Zhou X, Sheng Y, Yang R, Kong X (2010) Nicotine promotes cardiomyocyte apoptosis via oxidative stress and altered apoptosis-related gene expression. Cardiology 115(4):243–250

    Article  PubMed  CAS  Google Scholar 

  3. Barnoya J, Glantz SA (2005) Cardiovascular effects of second hand smoke: nearly as large as smoking. Circulation 111(20):2684–2698

    Article  PubMed  Google Scholar 

  4. Kuo WW, Wu CH, Lee SD, Lin JA, Chu CY, Hwang JM, Ueng KC, Chang MH, Yeh YL, Wang CJ, Liu JY, Huang CY (2005) Second-hand smoke-induced cardiac fibrosis is related to the Fas death receptor apoptotic pathway without mitochondria-dependent pathway involvement in rats. Environ Health Perspect 113(10):1349–1353

    Article  PubMed  CAS  Google Scholar 

  5. Gokulakrishnan A, Jayachandran DB, Thirunavukkarasu C (2011) Attenuation of the cardiac inflammatory changes and lipid anomalies by (−)-epigallocatechin-gallate in cigarette smoke exposed rats. Mol Cell Biochem 354(1–2):1–10

    Article  Google Scholar 

  6. Yamada S, Zhang XQ, Kadono T, Matsuoka N, Rollins D, Badger T, Rodesch CK, Barry WH (2009) Direct toxic effects of aqueous extract of cigarette smoke on cardiac myocytes at clinically relevant concentrations. Toxicol Appl Pharmacol 236(1):71–77

    Article  PubMed  CAS  Google Scholar 

  7. Gvozdjakova A, Kucharska J, Gvozdjak J (1992) Effect of smoking on the oxidative processes of cardiomyocytes. Cardiology 81(2–3):81–84

    PubMed  CAS  Google Scholar 

  8. Van Jaarsveld H, Kuyl J, Alberts DW (1992) Antioxidant vitamin supplementation of smoke exposed rats partially protects against myocardial ischemic reperfusion injury. Free Radic Res Commun 17(4):263–269

    Article  PubMed  Google Scholar 

  9. Aoshiba K, Tamaoki J, Nagai A (2001) Acute cigarette smoke exposure induces apoptosis of alveolar macrophages. Am J Physiol Lung Cell Mol Physiol 281(6):L1392–L1401

    PubMed  CAS  Google Scholar 

  10. Miro O, Alonso JR, Jarreta D, Casademont J, Urbano-Márquez A, Cardellach F (1999) Smoking disturbs mitochondrial respiratory chain function and enhances lipid peroxidation on human circulating lymphocytes. Carcinogenesis 20(7):1331–1336

    Article  PubMed  CAS  Google Scholar 

  11. Kim NH, Kang PM (2010) Apoptosis in cardiovascular diseases: mechanism and clinical implications. Korean Circ J 40(7):299–305

    Article  PubMed  CAS  Google Scholar 

  12. Clerk A, Cole SM, Cullingford TE, Harrison JG, Jormakka M, Valks DM (2003) Regulation of cardiac myocyte cell death. Pharmacol Ther 97(3):223–261

    Article  PubMed  CAS  Google Scholar 

  13. Zhou X, Li C, Xu W, Chen J (2012) Trimetazidine protects against smoking-induced left ventricular remodeling via attenuating oxidative stress, apoptosis, and inflammation. PLoS ONE 7(7):e40424

    Article  PubMed  CAS  Google Scholar 

  14. Das A, Dey N, Ghosh A, Das S, Chattopadhyay DJ, Chatterjee IB (2012) Molecular and cellular mechanisms of cigarette smoke-induced myocardial injury: prevention by vitamin C. PLoS ONE 7(9):e44151

    Article  PubMed  CAS  Google Scholar 

  15. Ramesh T, Sureka C, Bhuvana S, Hazeena Begum V (2010) Sesbania grandiflora diminishes oxidative stress and ameliorates antioxidant capacity in liver and kidney of rats exposed to cigarette smoke. J Physiol Pharmacol 61(4):467–476

    PubMed  CAS  Google Scholar 

  16. Banerjee S, Chattopadhyay R, Ghosh A, Koley H, Panda K, Roy S, Chattopadhyay D, Chatterjee IB (2008) Cellular and molecular mechanisms of cigarette smoke-induced lung damage and prevention by vitamin C. J Inflamm 5:21

    Article  Google Scholar 

  17. Hirai M, Hotta Y, Ishikawa N, Wakida Y, Fukuzawa Y, Isobe F, Nakano A, Chiba T, Kawamura N (2007) Protective effects of EGCG or GCG, a green tea catechin epimer, against post ischemic myocardial dysfunction in guinea-pig hearts. Life Sci 80(11):1020–1032

    Article  PubMed  CAS  Google Scholar 

  18. Velayutham P, Babu A, Liu D (2008) Green tea catechins and cardiovascular health. Curr Med Chem 15(18):1840–1850

    Article  Google Scholar 

  19. Sheng R, Gu ZL, Xie ML, Zhou WX, Guo CY (2007) EGCG inhibits cardiomyocyte apoptosis in pressure overload induced cardiac hypertrophy rats and protects cardiomyocyte from oxidative stress. Acta Pharmacol Sin 28(2):191–201

    Article  PubMed  CAS  Google Scholar 

  20. Anbarasi K, Vani G, Shyamala Devi CS (2005) Protective effect of bacoside A on cigarette smoking-induced brain mitochondrial dysfunction in rats. J Environ Pathol Toxicol Oncol 24(3):225–234

    Article  PubMed  CAS  Google Scholar 

  21. Jhonson D, Lardy H (1967) Isolation of liver and kidney mitochondria. In: Estabrook RW (ed) Methods in enzymology, vol 10. Academic Press, London, pp 94–96

    Google Scholar 

  22. Ohkawa H, Ohishi N, Yagi K (1979) Assay for lipid peroxides in animal tissue by thiobarbituric acid reaction. Anal Biochem 95(2):351–358

    Article  PubMed  CAS  Google Scholar 

  23. Ellman GL (1959) Tissue sulphydryl groups. Arch Biochem Biophys 82(1):70–77

    Article  PubMed  CAS  Google Scholar 

  24. Misra HP, Fridovich I (1972) The role of superoxide anion in the auto oxidation of epinephrine and a simple assay of superoxide dismutase. J Biol Chem 247(10):3170–3175

    PubMed  CAS  Google Scholar 

  25. Sinha AK (1972) Colorimetric assay of catalase. Anal Biochem 47(2):389–394

    Article  PubMed  CAS  Google Scholar 

  26. Rotruck JT, Pope AL, Ganther HE, Hafeman DG, Hoekstra G (1973) Selenium biochemical role as a component of glutathione peroxidase. Science 179(4073):588–590

    Article  PubMed  CAS  Google Scholar 

  27. Habig WH, Jakoby WB (1981) Assays for differentiation of glutathione-s-transferases. Methods Enzymol 77:398–405

    Article  PubMed  CAS  Google Scholar 

  28. Carlberg I, Mannervik B (1975) Purification and characterization of the flavo enzyme glutathione reductase from rat liver. J Biol Chem 250(14):5475–5480

    PubMed  CAS  Google Scholar 

  29. King J (1965) Isocitrate dehydrogenase. In: King JC, Van D (eds) Practical clinical enzymology. Nostrand Co., London, p 363

    Google Scholar 

  30. Reed LJ, Mukherjee RB (1969) α-Ketoglutarate dehydrogenase complex from Escherichia coli. In: Lewinstein JM (ed) Methods in enzymology. Academic Press, New York, pp 55–61

    Google Scholar 

  31. Slater EC, Borner WD Jr (1952) The effect of fluoride on the succinic oxidase system. Biochem J 52(2):185–196

    PubMed  CAS  Google Scholar 

  32. Mehler AH, Kornberg A, Criscuoli S, Ochoa S (1948) The enzymatic mechanism of oxidation reductions between malate or isocitrate or pyruvate. J Biol Chem 174(3):961–977

    PubMed  CAS  Google Scholar 

  33. Minakami S, Ringler RL, Singer TP (1962) Studies on the respiratory chain-linked dihydro diphospho pyridine nucleotide dehydrogenase. I. Assay of the enzyme in particulate and in soluble preparations. J Biol Chem 237:569–576

    PubMed  CAS  Google Scholar 

  34. Pearl W, Caocarano J, Zweifach BW (1963) Microdetermination of cytochrome oxidase in rat tissues by the oxidation on N-phenyl-phenylenediamine or ascorbic acid. J Histochem Cytochem 11(1):102–107

    Article  CAS  Google Scholar 

  35. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193(1):265–275

    PubMed  CAS  Google Scholar 

  36. Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning—a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, p 1.74

  37. Crow MT, Mani K, Nam YJ, Kitsis RN (2004) The mitochondrial death pathway and cardiac myocyte apoptosis. Circ Res 95(10):957–970

    Article  PubMed  CAS  Google Scholar 

  38. Chen H, Vlahos R, Bozinovski S, Jones J, Anderson GP, Morris MJ (2005) Effect of short-term cigarette smoke exposure on body weight, appetite and brain neuropeptide Y in mice. Neuropsychopharmacology 30(4):713–719

    PubMed  Google Scholar 

  39. Ramesh T, Begum VH (2008) Protective effect of Sesbania grandiflora against cigarette smoke-induced oxidative damage in rats. J Med Food 11(2):369–375

    Article  PubMed  CAS  Google Scholar 

  40. Devika PT, Stanley Mainzen Prince P (2008) (−)Epigallocatechin-gallate (EGCG) prevents mitochondrial damage in isoproterenol-induced cardiac toxicity in albino Wistar rats: a transmission electron microscopic and in vitro study. Pharmacol Res 57(5):351–357

    Article  PubMed  CAS  Google Scholar 

  41. Fu Y, Zheng S, Lu SC, Chen A (2008) Epigallocatechin-3-gallate inhibits growth of activated hepatic stellate cells by enhancing the capacity of glutathione synthesis. Mol Pharmacol 73(5):1465–1473

    Article  PubMed  CAS  Google Scholar 

  42. Sheng R, Gu ZL, Xie ML, Zhou WX, Guo CY (2009) EGCG inhibits proliferation of cardiac fibroblasts in rats with cardiac hypertrophy. Planta Med 75(2):113–120

    Article  PubMed  CAS  Google Scholar 

  43. Sheng R, Gu ZL, Xie ML, Zhou WX, Guo CY (2010) Epigallocatechin gallate protects H9c2 cardiomyoblasts against hydrogen dioxides-induced apoptosis and telomere attrition. Eur J Pharmacol 641(2–3):199–206

    Article  PubMed  CAS  Google Scholar 

  44. Sun L, Luo C, Long J, Wei D, Liu J (2006) Acrolein is a mitochondrial toxin: effects on respiratory function and enzyme activities in isolated rat liver mitochondria. Mitochondrion 6(3):136–142

    Article  PubMed  CAS  Google Scholar 

  45. Fickl H, Van Antwerpen VL, Richards GA, Van der Westhuyzen DR, Davies N, Van der Walt R, Van der Merwe CA, Anderson R (1996) Increased levels of autoantibodies to cardiolipin and oxidised low density lipoprotein are inversely associated with plasma vitamin C status in cigarette smokers. Atherosclerosis 124(1):75–81

    Article  PubMed  CAS  Google Scholar 

  46. Hu N, Guo R, Han X, Zhu B, Ren J (2011) Cardiac-specific over expression of metallothionein rescues nicotine-induced cardiac contractile dysfunction and interstitial fibrosis. Toxicol Lett 202(1):8–14

    Article  PubMed  CAS  Google Scholar 

  47. Adams JM (2003) Ways of dying: multiple pathways to apoptosis. Genes Dev 17(20):2481–2495

    Article  PubMed  CAS  Google Scholar 

  48. Zornoff LA, Matsubara LS, Matsubara BB, Okoshi MP, Okoshi K, Dal Pai-Silva M, Carvalho RF, Cicogna AC, Padovani CR, Novelli EL, Novo R, Campana AO, Paiva SA (2006) Beta-carotene supplementation attenuates cardiac remodeling induced by one-month tobacco-smoke exposure in rats. Toxicol Sci 90(1):259–266

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge the assistance from Dr. P. V. Anandhbabu, Dr. Murali, Dr. P. Ashok Kumar, and Dr. S. Bharathiraja. We also acknowledge Prof. B. Kannabiran (Retired), Department of Biochemistry and Molecular Biology, Pondicherry University, Puducherry, India for his assistance while revising this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thirunavukkarasu Chinnasamy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Adikesavan, G., Vinayagam, M.M., Abdulrahman, L.A. et al. (−)-Epigallocatechin-gallate (EGCG) stabilize the mitochondrial enzymes and inhibits the apoptosis in cigarette smoke-induced myocardial dysfunction in rats. Mol Biol Rep 40, 6533–6545 (2013). https://doi.org/10.1007/s11033-013-2673-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-013-2673-5

Keywords

Navigation

-