Skip to main content
Log in

Molecular characterization of Brassica napus stress related transcription factors, BnMYB44 and BnVIP1, selected based on comparative analysis of Arabidopsis thaliana and Eutrema salsugineum transcriptomes

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Many studies have been performed to identify regulatory circuit underlying plant stress tolerance. However, the reliability of some findings has been criticized because of exclusive use of stress sensitive plant species such as Arabidopsis thaliana. Sensitive plant species often harbor narrow defensive mechanisms and have relatively low capacity for adaptive responses. Therefore, it is useful to employ tolerant model plants, such as Eutrema salsugineum, to provide comprehensive insights into various mechanisms involved in response to abiotic stresses. In this study, comparative transcriptome and regulatory network analysis of stress-sensitive (A. thaliana) and -tolerant (E. salsugineum) model plants uncovered regulatory hierarchies underlying response to abiotic stresses and suggested the transcription factor genes, MYB44 and VIP1 as the candidate hub genes to perform molecular analyses on their Brassica napus homologs, BnMYB44 and BnVIP1. The full-length coding sequence of BnMYB44 and BnVIP1 with 891 and 969 bp long were cloned and sequenced. They shared high similarity with their counterparts in other plants at nucleotide and amino acid levels. The expression patterns of BnMYB44 and BnVIP1 genes of the two B. napus cultivars under drought and salt stress conditions coupled with the data obtained from the physiological measurements as well as analysis of the BnMYB44 and BnVIP1 promoters suggested that BnMYB44 and BnVIP1 genes may contribute to responses to drought and salt stresses in B. napus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Farooq M, Hussain M, Wahid A, Siddique KHM (2012) Drought stress in plants: an overview. In: Aroca R (ed) Plant responses to drought stress. Springer, Berlin, pp 1–33

    Google Scholar 

  2. Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annu Rev Plant Biol 59:651–681

    CAS  PubMed  Google Scholar 

  3. Atkinson NJ, Urwin PE (2012) The interaction of plant biotic and abiotic stresses: from genes to the field. J Exp Bot 63:3523–3543

    CAS  PubMed  Google Scholar 

  4. Farrant JM, Ruelland E (2015) Plant signalling mechanisms in response to the environment. Environ Exp Bot 114:1–3

    Google Scholar 

  5. Golldack D, Lüking I, Yang O (2011) Plant tolerance to drought and salinity: stress regulating transcription factors and their functional significance in the cellular transcriptional network. Plant Cell Rep 30:1383–1391

    CAS  PubMed  Google Scholar 

  6. Cristina MS, Petersen M, Mundy J (2010) Mitogen-activated protein kinase signaling in plants. Annu Rev Plant Biol 61:621–649

    Google Scholar 

  7. Duque AS, Farinha AP, da Silva AB, de Almeida AM, Santos D, da Silva JM, Fevereiro P, de Sousa Araújo S (2013) Abiotic stress responses in plants: unraveling the complexity of genes and networks to survive. INTECH Open Access Publisher, Rijeka

    Google Scholar 

  8. Gehan MA, Greenham K, Mockler TC, McClung CR (2015) Transcriptional networks—crops, clocks, and abiotic stress. Curr Opin Plant Biol 24:39–46

    CAS  PubMed  Google Scholar 

  9. Wohlbach DJ, Quirino BF, Sussman MR (2008) Analysis of the Arabidopsis histidine kinase ATHK1 reveals a connection between vegetative osmotic stress sensing and seed maturation. The Plant Cell Online 20:1101–1117

    CAS  Google Scholar 

  10. Deyholos MK (2010) Making the most of drought and salinity transcriptomics. Plant Cell Environ 33:648–654

    CAS  PubMed  Google Scholar 

  11. Amtmann A (2009) Learning from evolution: Thellungiella generates new knowledge on essential and critical components of abiotic stress tolerance in plants. Mol Plant 2:3–12

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Gong Q, Li P, Ma S, Indu Rupassara S, Bohnert HJ (2005) Salinity stress adaptation competence in the extremophile Thellungiella halophila in comparison with its relative Arabidopsis thaliana. Plant J 44:826–839

    CAS  PubMed  Google Scholar 

  13. Mucha S, Walther D, Müller TM, Hincha DK, Glawischnig E (2015) Substantial reprogramming of the Eutrema salsugineum (Thellungiella salsuginea) transcriptome in response to UV and silver nitrate challenge. BMC Plant Biol 15:1

    CAS  Google Scholar 

  14. Wang X, Chang L, Wang B, Wang D, Li P, Wang L, Yi X, Huang Q, Peng M, Guo A (2013) Comparative proteomics of Thellungiella halophila leaves from plants subjected to salinity reveals the importance of chloroplastic starch and soluble sugars in halophyte salt tolerance. Mol Cell Proteom 12:2174–2195

    CAS  Google Scholar 

  15. Wong C, Li Y, Whitty B, Diaz-Camino C, Akhter S, Brandle J, Golding G, Weretilnyk E, Moffatt B, Griffith M (2005) Expressed sequence tags from the Yukon ecotype of Thellungiella reveal that gene expression in response to cold, drought and salinity shows little overlap. Plant Mol Biol 58:561–574

    CAS  PubMed  Google Scholar 

  16. Bressan RA, Zhang C, Zhang H, Hasegawa PM, Bohnert HJ, Zhu J-K (2001) Learning from the Arabidopsis experience. The next gene search paradigm. Plant Physiol 127:1354–1360

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Zhu J-K (2001) Plant salt tolerance. Trends Plant Sci 6:66–71

    CAS  PubMed  Google Scholar 

  18. Xu X, Feng J, Lü S, Lohrey GT, An H, Zhou Y, Jenks MA (2014) Leaf cuticular lipids on the Shandong and Yukon ecotypes of saltwater cress, Eutrema salsugineum, and their response to water deficiency and impact on cuticle permeability. Physiol Plant 151:446–458

    CAS  PubMed  Google Scholar 

  19. Taji T, Sakurai T, Mochida K, Ishiwata A, Kurotani A, Totoki Y, Toyoda A, Sakaki Y, Seki M, Ono H (2008) Large-scale collection and annotation of full-length enriched cDNAs from a model halophyte, Thellungiella halophila. BMC Plant Biol 8:1

    Google Scholar 

  20. Taji T, Seki M, Satou M, Sakurai T, Kobayashi M, Ishiyama K, Narusaka Y, Narusaka M, Zhu J-K, Shinozaki K (2004) Comparative genomics in salt tolerance between Arabidopsis and Arabidopsis-related halophyte salt cress using Arabidopsis microarray. Plant Physiol 135:1697–1709

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Yang R, Jarvis DE, Chen H, Beilstein MA, Grimwood J, Jenkins J, Shu S, Prochnik S, Xin M, Ma C (2013) The reference genome of the halophytic plant Eutrema salsugineum. Front Plant Sci 4:14

    Google Scholar 

  22. Diepenbrock W (2000) Yield analysis of winter oilseed rape (Brassica napus L.): a review. Field Crops Res 67, 35–49.

    Google Scholar 

  23. Raymer PL (2002) Canola: an emerging oilseed crop. Trends New Crops New Uses 1:122–126

    Google Scholar 

  24. Xie, F.L., Huang, S.Q., Guo, K., Xiang, A.L., Zhu, Y.Y., Nie, L. and Yang, Z.M., 2007. Computational identification of novel microRNAs and targets in Brassica napus. FEBS Lett 581:1464–1474.

    CAS  PubMed  Google Scholar 

  25. Aliakbari M, Razi H (2013) Isolation of Brassica napus MYC2 gene and analysis of its expression in response to water deficit stress. Mol Biol Res Commun 2:63–71

    Google Scholar 

  26. Bakhtari B, Razi H (2014) Differential expression of BnSRK2D gene in two Brassica napus cultivars under water deficit stress. Mol Biol Res Commun 3:241–251

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Dalal M, Tayal D, Chinnusamy V, Bansal KC (2009) Abiotic stress and ABA-inducible Group 4 LEA from Brassica napus plays a key role in salt and drought tolerance. J Biotechnol 139:137–145

    CAS  PubMed  Google Scholar 

  28. Orr W, Iu B, White TC, Robert LS, Singh J (1992) Complementary DNA sequence of a low temperature-induced Brassica napus gene with homology to the Arabidopsis thaliana kin1 gene. Plant Physiol 98:1532

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Zhuang J, Sun C-C, Zhou X-R, Xiong A-S, Zhang J (2011) Isolation and characterization of an AP2/ERF-RAV transcription factor BnaRAV-1-HY15 in Brassica napus L. HuYou15. Mol Biol Rep 38:3921–3928

    CAS  PubMed  Google Scholar 

  30. Boyes DC, Zayed AM, Ascenzi R, McCaskill AJ, Hoffman NE, Davis KR, Görlach J (2001) Growth stage—based phenotypic analysis of Arabidopsis: a model for high throughput functional genomics in plants. Plant Cell 13:1499–1510

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Irizarry RA, Hobbs B, Collin F, Beazer-Barclay YD, Antonellis KJ, Scherf U, Speed TP (2003) Exploration, normalization, and summaries of high density oligonucleotide array probe level data. Biostatistics 4:249–264

    PubMed  Google Scholar 

  32. Blazejczyk M, Miron M, Nadon R (2007) FlexArray: a statistical data analysis software for gene expression microarrays. Genome Quebec, Montreal

    Google Scholar 

  33. Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Ser B (Methodol) 57:289–300

    Google Scholar 

  34. Dai X, Sinharoy S, Udvardi M, Zhao P (2013) PlantTFcat: an online plant transcription factor and transcriptional regulator categorization and analysis tool. BMC Bioinform 14:321

    Google Scholar 

  35. Yao Q, Ge H, Wu S, Zhang N, Chen W, Xu C, Gao J, Thelen JJ, Xu D (2014) P3DB 3.0: from plant phosphorylation sites to protein networks. Nucleic Acids Res 42:D1206–D1213

    CAS  PubMed  Google Scholar 

  36. Nikitin A, Egorov S, Daraselia N, Mazo I (2003) Pathway studio—the analysis and navigation of molecular networks. Bioinformatics 19:2155–2157

    CAS  PubMed  Google Scholar 

  37. Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, Paulovich A, Pomeroy SL, Golub TR, Lander ES (2005) Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci USA 102:15545–15550

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Panahi B, Mohammadi SA, Khaksefidi RE, Mehrabadi JF, Ebrahimie E (2015) Genome-wide analysis of alternative splicing events in Hordeum vulgare: highlighting retention of intron-based splicing and its possible function through network analysis. FEBS Lett 589:3564–3575

    CAS  PubMed  Google Scholar 

  39. Ebrahimi Khaksefidi R, Mirlohi S, Khalaji F, Fakhari Z, Shiran B, Fallahi H, Rafiei F, Budak H, Ebrahimie E (2015) Differential expression of seven conserved microRNAs in response to abiotic stress and their regulatory network in Helianthus annuus. Front Plant Sci 6:741

    PubMed  PubMed Central  Google Scholar 

  40. Panahi B, Abbaszadeh B, Taghizadeghan M, Ebrahimie E (2014) Genome-wide survey of alternative splicing in Sorghum bicolor. Physiol Mol Biol Plants 20:323–329

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Boccaletti S, Latora V, Moreno Y, Chavez M, Hwang D-U (2006) Complex networks: structure and dynamics. Phys Rep 424:175–308

    Google Scholar 

  42. Scardoni G, Petterlini M, Laudanna C (2009) Analyzing biological network parameters with CentiScaPe. Bioinformatics 25:2857–2859

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B, Ideker T (2003) Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 13:2498–2504

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Darjani A, Rad AHS, Gholipour S, Haghighat A (2013) Investigation the effects of water stress on yield and yield components of canola winter varieties. Int J Agron Plant Prod 4:370–374

    Google Scholar 

  45. Mirzaee M, Moieni A, Ghanati F (2013) Effects of drought stress on the lipid peroxidation and antioxidant enzyme activities in two canola (Brassica napus L.) cultivars. J Agric Sci Technol 15:593–602

    CAS  Google Scholar 

  46. Rameeh V, Cherati A, Abbaszadeh F (2012) Salinity effects on yield, yield components and nutrient ions in rapeseed genotypes. J Agric Sci Belgrade 57:19–29

    Google Scholar 

  47. Slatyer R, Shmueli E (1967) Measurements of internal water status and transpiration. In: Hagan RM, Haise HR, Edminster TW (eds.) Irrigation of Agricultural Lands. American Society of Agronomy. pp 337–353

  48. Bates L, Waldren R, Teare I (1973) Rapid determination of free proline for water-stress studies. Plant soil 39:205–207

    CAS  Google Scholar 

  49. Sairam R, Srivastava G (2002) Changes in antioxidant activity in sub-cellular fractions of tolerant and susceptible wheat genotypes in response to long term salt stress. Plant Sci 162:897–904

    CAS  Google Scholar 

  50. Munns R, Wallace PA, Teakle NL, Colmer TD (2010) Measuring soluble ion concentrations (Na+, K+, Cl) in salt-treated plants, plant stress tolerance. Springer, New York, pp 371–382

    Google Scholar 

  51. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−∆∆CT method. Methods 25:402–408

    CAS  PubMed  Google Scholar 

  52. Lescot M, Déhais P, Thijs G, Marchal K, Moreau Y, Van de Peer Y, Rouzé P, Rombauts S (2002) PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucleic Acids Res 30:325–327

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Shamloo-Dashtpagerdi R, Razi H, Aliakbari M, Lindlöf A, Ebrahimi M, Ebrahimie E (2015) A novel pairwise comparison method for in silico discovery of statistically significant cis-regulatory elements in eukaryotic promoter regions: application to Arabidopsis. J Theor Biol 364:364–376

    CAS  PubMed  Google Scholar 

  54. Koschützki D, Schreiber F (2008) Centrality analysis methods for biological networks and their application to gene regulatory networks. Gene Regul Syst Biol 2:193

    Google Scholar 

  55. Du H, Zhang L, Liu L, Tang X-F, Yang W-J, Wu Y-M, Huang Y-B, Tang Y-X (2009) Biochemical and molecular characterization of plant MYB transcription factor family. Biochemistry 74:1–11

    CAS  PubMed  Google Scholar 

  56. Kirik V, Kölle K, Miséra S, Bäumlein H (1998) Two novel MYB homologues with changed expression in late embryogenesis-defective Arabidopsis mutants. Plant Mol Biol 37:819–827

    CAS  PubMed  Google Scholar 

  57. Tzfira T, Vaidya M, Citovsky V (2001) VIP1, an Arabidopsis protein that interacts with Agrobacterium VirE2, is involved in VirE2 nuclear import and Agrobacterium infectivity. EMBO J 20:3596–3607

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Chakraborty K, Bose J, Shabala L, Shabala S (2016) Difference in root K+ retention ability and reduced sensitivity of K+-permeable channels to reactive oxygen species confer differential salt tolerance in three Brassica species. J Exp Bot 67:4611–4625

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Cramer GR, Urano K, Delrot S, Pezzotti M, Shinozaki K (2011) Effects of abiotic stress on plants: a systems biology perspective. BMC Plant Biol 11:163

    PubMed  PubMed Central  Google Scholar 

  60. Nakashima K, Ito Y, Yamaguchi-Shinozaki K (2009) Transcriptional regulatory networks in response to abiotic stresses in Arabidopsis and grasses. Plant Physiol 149:88–95

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Shamloo-Dashtpagerdi R, Razi H, Ebrahimie E (2015) Mining expressed sequence tags of rapeseed (Brassica napus L.) to predict the drought responsive regulatory network. Physiol Mol Biol Plants 21:329–340

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Yamaguchi-Shinozaki K, Shinozaki K (2006) Transcriptional regulatory networks in cellular responses and tolerance to dehydration and cold stresses. Annu Rev Plant Biol 57:781–803

    CAS  PubMed  Google Scholar 

  63. Dubos C, Stracke R, Grotewold E, Weisshaar B, Martin C, Lepiniec L (2010) MYB transcription factors in Arabidopsis. Trends Plant Sci 15:573–581

    CAS  PubMed  Google Scholar 

  64. Jung C, Seo JS, Han SW, Koo YJ, Kim CH, Song SI, Nahm BH, Choi D, Y. and Cheong J-J (2008) Overexpression of AtMYB44 enhances stomatal closure to confer abiotic stress tolerance in transgenic Arabidopsis. Plant Physiol 146:623–635

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Joo J, Oh N-I, Nguyen NH, Lee YH, Kim Y-K, Song SI, Cheong J-J (2017) Intergenic transformation of AtMYB44 confers drought stress tolerance in rice seedlings. Appl Biol Chem 60:447–455

    CAS  Google Scholar 

  66. Tsugama D, Liu S, Takano T (2014) Analysis of functions of VIP1 and its close homologs in osmosensory responses of Arabidopsis thaliana. PLoS ONE 9:e103930

    PubMed  PubMed Central  Google Scholar 

  67. Djamei A, Pitzschke A, Nakagami H, Rajh I, Hirt H (2007) Trojan horse strategy in Agrobacterium transformation: abusing MAPK defense signaling. Science 318:453–456

    CAS  PubMed  Google Scholar 

  68. Pitzschke A, Djamei A, Teige M, Hirt H (2009) VIP1 response elements mediate mitogen-activated protein kinase 3-induced stress gene expression. Proc Natl Acad Sci 106, 18414–18419

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Norouzi M, Toorchi M, Salekdeh GH, Mohammadi S, Neyshabouri M, Aharizad S (2008) Effect of water deficit on growth, grain yield and osmotic adjustment in rapeseed. J Food Agric Environ 6:312

    Google Scholar 

  70. Szabados L, Savoure A (2010) Proline: a multifunctional amino acid. Trends Plant Sci 15:89–97

    CAS  PubMed  Google Scholar 

  71. Rejeb KB, Abdelly C, Savouré A (2014) How reactive oxygen species and proline face stress together. Plant Physiol Biochem 80:278–284

    PubMed  Google Scholar 

  72. Brodribb TJ, Holbrook NM (2003) Stomatal closure during leaf dehydration, correlation with other leaf physiological traits. Plant Physiol 132:2166–2173

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Geiger D, Maierhofer T, AL-Rasheid KA, Scherzer S, Mumm P, Liese A, Ache P, Wellmann C, Marten I, Grill E (2011) Stomatal closure by fast abscisic acid signaling is mediated by the guard cell anion channel SLAH3 and the receptor RCAR1. Sci Signal 4:ra32

    PubMed  Google Scholar 

  74. Acharya BR, Jeon BW, Zhang W, Assmann SM (2013) Open Stomata 1 (OST1) is limiting in abscisic acid responses of Arabidopsis guard cells. New Phytol 200:1049–1063

    CAS  PubMed  Google Scholar 

  75. Yoshida R, Umezawa T, Mizoguchi T, Takahashi S, Takahashi F, Shinozaki K (2006) The regulatory domain of SRK2E/OST1/SnRK2. 6 interacts with ABI1 and integrates abscisic acid (ABA) and osmotic stress signals controlling stomatal closure in Arabidopsis. J Biol Chem 281:5310–5318

    CAS  PubMed  Google Scholar 

  76. Persak H, Pitzschke A (2014) Dominant repression by Arabidopsis transcription factor MYB44 causes oxidative damage and hypersensitivity to abiotic stress. Int J Mol Sci 15:2517–2537

    PubMed  PubMed Central  Google Scholar 

  77. Zhao Y, Xing L, Wang X, Hou Y-J, Gao J, Wang P, Duan C-G, Zhu X, Zhu J-K (2014) The ABA receptor PYL8 promotes lateral root growth by enhancing MYB77-dependent transcription of auxin-responsive genes. Sci Signal 7:ra53

    PubMed  PubMed Central  Google Scholar 

  78. Walker L, Boddington C, Jenkins D, Wang Y, Grønlund JT, Hulsmans J, Kumar S, Patel D, Moore JD, Carter A (2017) Root architecture shaping by the environment is orchestrated by dynamic gene expression in space and time. Plant Cell. https://doi.org/10.1105/tpc.16.00961

    Article  PubMed  PubMed Central  Google Scholar 

  79. Benito B, Haro R, Amtmann A, Cuin TA, Dreyer I (2014) The twins K+ and Na+ in plants. J Plant Physiol 171:723–731

    CAS  PubMed  Google Scholar 

  80. Nguyen NH, Cheong J-J (2018) H2A. Z-containing nucleosomes are evicted to activate AtMYB44 transcription in response to salt stress. Biochem Biophys Res Commun 499:1039–1043

    CAS  PubMed  Google Scholar 

  81. Hosseinpour B, Bakhtiarizadeh MR, Khosravi P, Ebrahimie E (2013) Predicting distinct organization of transcription factor binding sites on the promoter regions: a new genome-based approach to expand human embryonic stem cell regulatory network. Gene 531:212–219

    CAS  PubMed  Google Scholar 

  82. Bakhtiarizadeh MR, Moradi-Shahrbabak M, Ebrahimie E (2013) Underlying functional genomics of fat deposition in adipose tissue. Gene 521:122–128

    CAS  PubMed  Google Scholar 

  83. Mahdi LK, Deihimi T, Zamansani F, Fruzangohar M, Adelson DL, Paton JC, Ogunniyi AD, Ebrahimie E (2014) A functional genomics catalogue of activated transcription factors during pathogenesis of pneumococcal disease. BMC Genom 15:769

    Google Scholar 

  84. Abe H, Urao T, Ito T, Seki M, Shinozaki K, Yamaguchi-Shinozaki K (2003) Arabidopsis AtMYC2 (bHLH) and AtMYB2 (MYB) function as transcriptional activators in abscisic acid signaling. Plant Cell Online 15:63–78

    CAS  Google Scholar 

  85. Deppmann CD, Alvania RS, Taparowsky EJ (2006) Cross-species annotation of basic leucine zipper factor interactions: insight into the evolution of closed interaction networks. Mol Biol Evol 23:1480–1492

    CAS  PubMed  Google Scholar 

  86. Corrêa LGG, Riaño-Pachón DM, Schrago CG, Dos Santos RV, Mueller-Roeber B, Vincentz M (2008) The role of bZIP transcription factors in green plant evolution: adaptive features emerging from four founder genes. PLoS ONE 3:e2944

    PubMed  PubMed Central  Google Scholar 

  87. Ramji D, Foka P (2002) CCAAT/enhancer-binding proteins: structure, function and regulation. Biochem J 365:561–575

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This research was supported by Department of Crop Production and Plant Breeding, College of Agriculture, Shiraz University.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hooman Razi or Esmaeil Ebrahimie.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (RAR 57 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shamloo-Dashtpagerdi, R., Razi, H., Ebrahimie, E. et al. Molecular characterization of Brassica napus stress related transcription factors, BnMYB44 and BnVIP1, selected based on comparative analysis of Arabidopsis thaliana and Eutrema salsugineum transcriptomes. Mol Biol Rep 45, 1111–1124 (2018). https://doi.org/10.1007/s11033-018-4262-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-018-4262-0

Keywords

Navigation

-