Skip to main content

Advertisement

Log in

Brain Endothelial Cell Death: Modes, Signaling Pathways, and Relevance to Neural Development, Homeostasis, and Disease

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Emerging evidence indicates that brain microvascular endothelial cells play a critical role in brain development, maturation, and homeostasis. Acute or chronic insults, including oxidative stress, oxygen–glucose deprivation, trauma, infections, inflammatory cytokines, DNA damaging agents, β-amyloid deposition, and endoplasmic reticulum stress induce brain endothelial cell dysfunction and damage, which can result in cell death. The homeostatic balance between endothelial cell survival and endothelial cell death is critical for brain development, remodeling, and repair. On the other hand, dysregulation of brain endothelial cell death exacerbates, or even initiates, several inflammatory, ischemic, and degenerative disorders of the central nervous system. In here, the morphological, biochemical, and functional characteristics of the brain endothelium and its contribution to brain homeostasis will be reviewed. Recent insights into modalities and regulatory pathways involved in brain endothelial cell death will be described. The effects of regulated and dysregulated endothelial cell death leading to angiogenesis will be outlined. The relevance of brain endothelial cell dysfunction and death to disease processes will be discussed with special reference to recent findings that could help translate current knowledge on brain endothelial cell apoptosis into new therapeutic strategies for the treatment of certain neurological disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Lopez AD, Murray CJL (1998) The global burden of disease, 1990–2020. Nat Med 4:1241–1243

    PubMed  CAS  Google Scholar 

  2. Hirtz D, Thurman DJ, Gwinn-Hardy K, Mohammed M, Chaudhuri AR, Zalutsky R (2007) How common are the “common” neurological disorders. Neurology 68:326–337

    PubMed  CAS  Google Scholar 

  3. Janca A, Prilipko L, Saraceno B (2000) A World Health Organization perspective on neurology and neuroscience. Arch Neurol 57:1786–1788

    PubMed  CAS  Google Scholar 

  4. Janca A, Aarli JA, Prilipko L, Dua T, Saxena S, Saraceno B (2006) WHO/WFN survey on neurological services: a world-wide perspective. J Neurol Sci 247:29–34

    PubMed  Google Scholar 

  5. Dua T, Garrido Cumbrera M, Mathers C, Saxena S (2006) Global burden of neurological disorders: estimates and projections. In: WHO (ed) Neurological disorders: public health challenges, chapter 3. World Health Organization Press, Geneva, Switzerland, pp 27–39

  6. Girouard H, Iadecola C (2006) Neurovascular coupling in the normal brain and in hypertension, stroke and Alzheimer disease. J Appl Physiol 100:328–335

    PubMed  CAS  Google Scholar 

  7. Guo S, Kim WJ, Lok J, Lee S-R, Besancon E, Luo B-H, Stins MF, Wang X, Dedhar S, Lo EH (2008) Neuroprotection via matrix-trophic coupling between cerebral endothelial cells and neurons. Proc Natl Acad Sci USA 105:7582–7587

    PubMed  CAS  Google Scholar 

  8. Aird WC (2007) Phenotypic heterogeneity of the endothelium: I. Structure, function, and mechanisms. Circ Res 100:158–173

    PubMed  CAS  Google Scholar 

  9. Begley DJ, Brightman MW (2003) Structural and functional aspects of the blood–brain barrier. Prog Drug Res 61:39–78

    PubMed  CAS  Google Scholar 

  10. Bovetti S, Hsich YC, Bovolin P, Perroteau I, Kazunori T, Puche AC (2007) Blood vessels form a scaffold for neuroblast migration in the adult olfactory bulb. J Neurosci 27:5976–5980

    PubMed  CAS  Google Scholar 

  11. Fisher M (2008) Injuries to the vascular endothelium: vascular wall and endothelial dysfunction. Rev Neurol Dis 5:S4–S11

    PubMed  Google Scholar 

  12. Hamel E, Nicolakakis T, Aboulkassim B, Ongali B, Tong X-K (2007) Oxidative stress and cerebrovascular dysfunction in mouse models of Alzheimer’s disease. Exp Physiol 93:116–120

    PubMed  Google Scholar 

  13. del Zoppo GJ (2006) Stroke and neurovascular protection. New Engl J Med 354:553–555

    PubMed  Google Scholar 

  14. Hawkins BT, Davis TP (2005) The blood–brain barrier/neurovascular unit in health and disease. Pharmacol Rev 57:173–185

    PubMed  CAS  Google Scholar 

  15. Kniesel U, Wolburg H (2000) Tight junctions of the blood–brain barrier. Cell Mol Neurobiol 20:57–76

    PubMed  CAS  Google Scholar 

  16. Crone C, Olesen SP (1982) Electrical resistance of brain microvascular endothelium. Brain Res 241:49–55

    PubMed  CAS  Google Scholar 

  17. Oldenford WH, Cornford ME, Brown WJ (1977) The large apparent work capability of the blood–brain barrier: a study of the mitochondrial content of capillary endothelial cells in brain and other tissues of the rat. Ann Neurol 1:409–417

    Google Scholar 

  18. Sedlakova R, Shiver RR, Del Maestro RF (1999) Ultrastructure of the blood–brain barrier in the rabbit. J Submicrosc Cytol Pathol 31:149–161

    PubMed  CAS  Google Scholar 

  19. Park JA, Choi KS, Kim SY, Kim KW (2003) Coordinated interaction of the vascular and nervous systems: from molecule- to cell-based approaches. Biochem Biophys Res Commun 311:247–253

    PubMed  CAS  Google Scholar 

  20. Guo S, Lo EH (2009) Dysfunctional cell–cell signaling in the neurovascular unit as a paradigm for central nervous system disease. Stroke 40:S4–S7

    PubMed  Google Scholar 

  21. Hamel E (2006) Perivascular nerves and the regulation of the vascular tone. J Appl Physiol 100:1059–1064

    PubMed  Google Scholar 

  22. Koehler RC, Gebremedhin D, Harder DR (2006) Role of astrocytes in cerebrovascular regulation. J Appl Physiol 100:307–317

    PubMed  CAS  Google Scholar 

  23. Ward NL, Lamanna JC (2004) The neurovascular unit and its growth factors: coordinated response in the vascular and nervous systems. Neurol Res 26:870–883

    PubMed  CAS  Google Scholar 

  24. Iadecola C, Needergaard M (2007) Glia regulation of the cerebral microvasculature. Nat Neurosci 10:1369–1376

    PubMed  CAS  Google Scholar 

  25. del Zoppo GJ, Milner R (2006) Integrin–matrix interactions in the cerebral microvasculature. Arterioscler Thromb Vasc Biol 26:1966–1975

    PubMed  Google Scholar 

  26. Stupack DG, Cheresh DA (2002) Get a ligand, get a life: integrins, signaling and cell survival. J Cell Sci 115:3729–3738

    PubMed  CAS  Google Scholar 

  27. Carmeliet P, Tessier-Lavigne M (2005) Common mechanisms of nerve and blood vessel wiring. Nature 436:193–200

    PubMed  CAS  Google Scholar 

  28. Shen Q, Goderie SQ, Jin L, Karanth N, Sun Y, Abramova N, Vincent P, Pumiglia K, Temple S (2004) Endothelial cells stimulate self-renewal and expand neurogenesis of neural stem cells. Science 304:1338–1340

    PubMed  CAS  Google Scholar 

  29. Palmer TD, Willhoite AR, Gage FH (2000) Vascular niche for adult hippocampal neurogenesis. J Comp Neurol 425:479–494

    PubMed  CAS  Google Scholar 

  30. McCarty JH (2009) Integrin-mediated regulation of neurovascular development, physiology and disease. Cell Adh Migr 3:211–215

    PubMed  Google Scholar 

  31. Donovan MJ, Lin MI, Wiegn P, Ringstedt T, Kraemer R, Hahn R, Wang S, Ibañez CF, Rafii S, Hempstead BL (2000) Brain derived neurotrophic factor is an endothelial cell survival factor required for intramyocardial vessel stabilization. Development 127:4531–4540

    PubMed  CAS  Google Scholar 

  32. Kim H, Li Q, Hempstead BL, Madri JA (2004) Paracrine and autocrine functions of brain-derived neurotrophic factor (BDNF) and nerve growth factor (NGF) in brain-derived endothelial cells. J Biol Chem 279:33538–33546

    PubMed  CAS  Google Scholar 

  33. Leventhal C, Rafii S, Rafii D, Shahar A, Goldman SA (1999) Endothelial trophic support of neuronal production and recruitment from the adult mammalian subependyma. Mol Cell Neurosci 13:450–464

    PubMed  CAS  Google Scholar 

  34. Chen J, Zhang C, Jiang H, Li Y, Zhang L, Robin A, Katakowski M, Lu M, Chopp M (2005) Atorvastatin induction of VEGF and BDNF promotes brain plasticity after stroke in mice. J Cereb Blood Flow Meta 25:281–290

    Google Scholar 

  35. Chan PH (2005) Reactive oxygen radicals in signaling and damage in the ischemic brain. J Cereb Blood Flow Metab 21:2–14

    Google Scholar 

  36. Heo JH, Han SW, Lee SK (2005) Free radicals as triggers of brain edema formation after stroke. Free Rad Biol Med 39:51–70

    PubMed  CAS  Google Scholar 

  37. Yin K-J, Chen S-D, Lee J-M, Xu J, Hsu CY (2002) ATM gene regulates oxygen-glucose deprivation-induced nuclear factor-kB DNA-binding activity and downstream apoptotic cascade in mouse cerebrovascular endothelial cells. Stroke 33:2471–2477

    PubMed  CAS  Google Scholar 

  38. Kimura H, Gules I, Meguro T, Zhang JH (2003) Cytotoxicity of cytokines in cerebral microvascular endothelial cells. Brain Res 990:148–156

    PubMed  CAS  Google Scholar 

  39. van Sorge NM, Ebrahimi CM, McGillivray SM, Quach D, Sabet M, Guiney DG, Doran KS (2008) Anthrax toxins inhibit neutrophil signaling pathways in brain endothelium and contribute to the pathogenesis of meningitis. PloS One 3:1–12

    Google Scholar 

  40. Zipfel GJ, Han H, Ford AL, Lee J-M (2009) Cerebral amyloid angiopathy: progressive disruption of the neurovascular unit. Stroke 40:S16–S19

    PubMed  Google Scholar 

  41. Bell RD, Zlokovic BV (2009) Neurovascular mechanisms and blood–brain barrier disorder in Alzheimer’s disease. Acta Neuropathol 118:103–113

    PubMed  CAS  Google Scholar 

  42. Lipton P (1999) Ischemic cell death in brain neurons. Physiol Rev 79:1431–1568

    PubMed  CAS  Google Scholar 

  43. Sheline GE, Wara WM, Smith V (1980) Therapeutic irradiation and brain injury. Int J Radiat Oncol Biol Phys 6:1215–1228

    PubMed  CAS  Google Scholar 

  44. Kroemer G, Galluzzi L, Vandenabeele P, Abrams J, Alnemri ES, Baehrecke EH, Blagosklonny MV, El-Deiry WS, Golstein P, Green DR, Hengartner M, Knight RA, Kumar S, Lipton SA, Malorni W, Nuñez G, Peter ME, Tschopp J, Yuan J, Piacentini M, Zhivotovsky B, Melino G (2009) Classification of cell death: recommendations of the Nomenclature Committee on Cell Death. Cell Death Diff 16:3–11

    CAS  Google Scholar 

  45. Degterev A, Hitomi J, Germscheid M, Chen IL, Korkina O, Teng X, Abbott D, Cuny GD, Yuan C, Wagner G, Hedrick SM, Gerber SA, Lugovskoy A, Yuan J (2008) Identification of RIP1 kinase as a specific cellular target of necrostatins. Nat Chem Biol 4:313–321

    PubMed  CAS  Google Scholar 

  46. Hitomi J, Christofferson DE, Ng A, Yao J, Degterev A, Xavier RJ, Yuan J (2008) Identification of a molecular signaling network that regulates a cellular necrotic cell death pathway. Cell 135:1311–1323

    PubMed  CAS  Google Scholar 

  47. Degterev A, Huang Z, Boyce M, Li Y, Jagtap P, Mizushima N, Cuny GD, Mitchison TJ, Moskowitz MA, Yuan J (2005) Chemical inhibitor of nonapoptotic cell death with therapeutic potential for ischemic brain injury. Nat Chem Biol 1:112–119

    PubMed  CAS  Google Scholar 

  48. Kerr JF, Wyllie AH, Currie AR (1972) Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer 26:239–257

    PubMed  CAS  Google Scholar 

  49. Twomey C, McCarthy JV (2005) Pathways of apoptosis and importance in development. J Cell Mol Med 9:345–359

    PubMed  CAS  Google Scholar 

  50. Wyllie AH, Kerr JF, Currie AR (1980) Cell death: the significance of apoptosis. Int Rev Cytol 68:251–306

    PubMed  CAS  Google Scholar 

  51. Hetts SW (1998) To die or not to die: an overview of apoptosis and its role in disease. J Am Med Assoc 279:300–307

    CAS  Google Scholar 

  52. Stennicke HR, Salvesen GS (1998) Properties of the caspases. Biochim Biophys Acta 1387:17–31

    PubMed  CAS  Google Scholar 

  53. Cullen SP, Martin SJ (2009) Caspase activation pathways: some recent progress. Cell Death Diff 16:935–938

    CAS  Google Scholar 

  54. Slee EA, Adrain C, Martin SJ (2001) Executioner caspase-3, -6, and -7 perform distinct, non-redundant roles during the demolition phase of apoptosis. J Biol Chem 276:7320–7326

    PubMed  CAS  Google Scholar 

  55. Goll DE, Thompson VF, Li H, Wei W, Cong J (2003) The calpain system. Physiol Rev 83:731–801

    PubMed  CAS  Google Scholar 

  56. Chwieralski CE, Welte T, Bühling F (2006) Cathepsin-regulated apoptosis. Apoptosis 11:143–149

    PubMed  CAS  Google Scholar 

  57. Martinon F, Tschopp J (2007) Inflammatory caspases and inflammasomes: master switches of inflammation. Cell Death Diff 14:10–22

    CAS  Google Scholar 

  58. Sun XM, MacFarlane M, Zhuang J, Wolf BB, Green DR, Cohen GM (1999) Distinct caspase cascades are initiated in receptor-mediated and chemical-induced apoptosis. J Biol Chem 274:5053–5060

    PubMed  CAS  Google Scholar 

  59. Inoue S, Browne G, Melino G, Cohen GM (2009) Ordering of caspases in cells undergoing apoptosis by the intrinsic pathway. Cell Death Diff 16:1053–1061

    CAS  Google Scholar 

  60. Du C, Fang M, Li Y, Li L, Wang X (2000) Smac, a mitochondrial protein that promotes cytochrome c-dependent caspase activation by eliminating IAP inhibition. Cell 102:33–42

    PubMed  CAS  Google Scholar 

  61. Youle RJ, Strasser A (2008) The Bcl-2 protein family: opposing activities that mediate cell death. Nat Rev Mol Cell Biol 9:47–59

    PubMed  CAS  Google Scholar 

  62. Wosik K, Biernacki K, Khouzam MP, Prat A (2007) Death receptor expression and function at the human blood brain barrier. J Neurol Sci 259:53–60

    PubMed  CAS  Google Scholar 

  63. Basuroy S, Bhattacharya S, Leffler CW, Parfenova H (2009) Nox4 NADPH oxidase mediates oxidative stress and apoptosis caused by TNF-α in cerebral vascular endothelial cells. Am J Physiol Cell Physiol 296:C422–C432

    PubMed  CAS  Google Scholar 

  64. Rege TA, Stewart J Jr, Dranka B, Benveniste EN, Silverstein RL, Gladson CL (2009) Thrombospondin-1-induced apoptosis of brain microvascular endothelial cells can be mediated by TNF-R1. J Cell Physiol 218:94–103

    PubMed  CAS  Google Scholar 

  65. Sata M, Suhara T, Walsh K (2000) Vascular endothelial cells and smooth muscle cells differ in expression of Fas and Fas ligand and in sensitivity to Fas ligand-induced cell death: implications for vascular disease and therapy. Arterioscler Thromb Vasc Biol 20:309–316

    PubMed  CAS  Google Scholar 

  66. Janin A, Deschaumes C, Daneshpouy M, Estaquier J, Micic-Polianski J, Rajagopalan-Levasseur P, Akarid K, Mounier N, Gluckman E, Socié G, Ameisen JC (2002) CD95 engagement induces disseminated endothelial cell apoptosis in vivo: immunopathologic implications. Blood 99:2940–2947

    PubMed  CAS  Google Scholar 

  67. Choi C, Benveniste EN (2004) Fas ligand/Fas system in the brain: regulator of immune and apoptotic responses. Brain Res Rev 44:65–81

    PubMed  CAS  Google Scholar 

  68. Bermpohl D, Halle A, Freyer D, Dagand E, Braun JS, Bechmann I, Schröder NWJ, Weber JR (2005) Bacterial programmed cell death of cerebral endothelial cells involves dual death pathways. J Clin Invest 115:1607–1615

    PubMed  CAS  Google Scholar 

  69. Kim T-A, Avraham HK, Koh Y-H, Jiang S, Park I-W, Avraham S (2003) HIV-1 Tat-mediated apoptosis in human brain microvascular endothelial cells. J Immunol 170:2629–2637

    PubMed  CAS  Google Scholar 

  70. Wassmer SC, de Souza JB, Frère C, Candal FJ, Juhan-Vague I, Grau GE (2006) TGF-β1 released from activated platelets can induce TNF-stimulated human brain endothelium apoptosis: a new mechanism for microvascular lesion during cerebral malaria. J Immunol 176:1180–1184

    PubMed  CAS  Google Scholar 

  71. Girard M, Bisser S, Courtioux B, Vermot-Desroches C, Bouteille B, Wijdenes J, Preud’homme JL, Jauberteau MO (2003) In vitro induction of microglial and endothelial cell apoptosis by cerebrospinal fluids from patients with human African trypanosomiasis. Int J Parasitol 33:713–720

    PubMed  CAS  Google Scholar 

  72. Potter S, Chan-Ling T, Ball HJ, Mansour H, Mitchell A, Maluish L, Hunt NH (2006) Perforin mediated apoptosis of cerebral microvascular endothelial cells during experimental cerebral malaria. Int J Parasitol 36:485–496

    PubMed  CAS  Google Scholar 

  73. Suo Z, Fang C, Crawford F, Mullan M (1997) Superoxide free radical and intracellular calcium mediate Aβ1-42 induced endothelial toxicity. Brain Res 762:144–152

    PubMed  CAS  Google Scholar 

  74. Hitomi J, Katayama T, Eguchi Y, Kudo T, Taniguchi M, Koyama Y, Manabe T, Yamagishi S, Bando Y, Imaizumi K, Tsujimoto Y, Tohyama M (2004) Involvement of caspase-4 in endoplasmic reticulum stress-induced apoptosis and Abeta-induced cell death. J Cell Biol 165:347–356

    PubMed  CAS  Google Scholar 

  75. Kimura C, Oike M, Watanabe M, Ito Y (2007) Proapoptotic nitric oxide production in amyloid β protein-treated cerebral microvascular endothelial cells. Microcirculation 14:89–97

    PubMed  CAS  Google Scholar 

  76. Xu J, Chen S, Ku G, Ahmed SH, Xu J, Chen H, Hsu CY (2001) Amyloid β peptide-induced cerebral endothelial cell death involves mitochondrial dysfunction and caspase activation. J Cereb Blood Flow Metab 21:702–710

    PubMed  CAS  Google Scholar 

  77. Namura S, Zhu J, Fink K, Endres M, Srinivasan A, Tomaselli KJ, Yuan J, Moskowitz MA (1998) Activation and cleavage of caspase-3 in apoptosis induced by experimental cerebral ischemia. J Neurosci 18:3659–3668

    PubMed  CAS  Google Scholar 

  78. Brault S, Martinez-Bermudez AK, Marrache AM, Gobeil F Jr, Hou X, MD BM, Quiniou C, Almazan G, Lachance C, Roberts J II, Varma DR, Chemtob S (2003) Selective neuromicrovascular endothelial cell death by 8-Iso-prostaglandin F: possible role in ischemic brain injury. Stroke 34:776–782

    PubMed  CAS  Google Scholar 

  79. Cheng T, Liu D, Griffin JH, Fernández JA, Castellino F, Rosen ED, Fukudome K, Zlokovic BV (2003) Activated protein C blocks p53-mediated apoptosis in ischemic human brain endothelium and is neuroprotective. Nat Med 9:338–342

    PubMed  CAS  Google Scholar 

  80. Parfenova H, Basuroy S, Bhattacharya S, Tcheranova D, Qu Y, Regan RF, Leffler CW (2006) Glutamate induces oxidative stress and apoptosis in cerebral vascular endothelial cells: contributions of HO-1 and HO-2 to cytoprotection. Am J Physiol Cell Physiol 290:1399–1410

    Google Scholar 

  81. Quiniou C, Sennlaub F, Beauchamp MH, Checchin D, Lahaie I, Brault S, Gobeil F Jr, Sirinyan M, Kooli A, Hardy P, Pshezhetsky A, Chemtob S (2006) Dominant role for calpain in thromboxane-induced neuromicrovascular endothelial cytotoxicity. J Pharmacol Exp Ther 316:618–627

    PubMed  CAS  Google Scholar 

  82. Li Y-Q, Chen P, Haimovitz-Friedman A, Reilly RM, Wong CS (2003) Endothelial apoptosis initiates acute blood–barrier disruption after ionizing radiation. Cancer Res 63:5950–5956

    PubMed  CAS  Google Scholar 

  83. Peña LA, Fuks Z, Kolesnick RN (2000) Radiation-induced apoptosis of endothelial cells in the murine central nervous system: protection by fibroblast growth factor and sphingomyelinase deficiency. Cancer Res 60:321–327

    PubMed  Google Scholar 

  84. Jung Y-S, Kim C-S, Park H-S, Sohn S, Lee B-H, Moon C-K, Lee S-H, Baik EJ, Moon C-H (2003) N-nitrosocarbofuran induces apoptosis in mouse brain microvascular endothelial cells (bEnd.3). J Pharmacol Sci 93:489–495

    PubMed  CAS  Google Scholar 

  85. Jung Y-S, Jeong E-M, Park EK, Kim Y-M, Sohn S, Lee SH, Baik EJ, Moon C-H (2008) Cadmium induces apoptotic cell death through p38 MAPK in brain microvessel endothelial cells. Eur J Pharmacol 578:11–18

    PubMed  CAS  Google Scholar 

  86. Cheresh DA, Stupack DG (2008) Regulation of angiogenesis: apoptotic cues from the ECM. Oncogene 27:6285–6298

    PubMed  CAS  Google Scholar 

  87. Erdreich-Epstein A, Tran LB, Cox OT, Huang EY, Laug WE, Shimada H, Millard M (2005) Endothelial apoptosis induced by inhibition of integrins ανβ3 and ανβ5 involves ceramide metabolic pathways. Blood 105:4353–4361

    PubMed  CAS  Google Scholar 

  88. Cande C, Vahsen N, Garrido C, Kroemer G (2004) Apoptosis-inducing factor (AIF): caspase-independent after all. Cell Death Diff 11:591–595

    CAS  Google Scholar 

  89. Xu C, Bailly-Maitre B, Reed JC (2005) Endoplasmic reticulum stress: cell life and death decisions. J Clin Invest 115:2656–2664

    PubMed  CAS  Google Scholar 

  90. Fujii J, Wood K, Matsuda F, Carneiro-Filho BA, Schlegel KH, Yutsudo T, Binnington-Boyd B, Lingwood CA, Obata F, Kim KS, Yoshida S-I, Obrig T (2008) Shiga toxin 2 causes apoptosis in human brain microvascular endothelial cells via C/EBP homologous protein. Infect Immun 76:3679–3689

    PubMed  CAS  Google Scholar 

  91. Chang L, Karin M (2001) Mammalian MAP kinase signalling cascades. Nature 410:37–40

    PubMed  CAS  Google Scholar 

  92. Narasimhan P, Liu J, Song YS, Massengale JL, Chan PH (2009) VEGF stimulates the ERK 1/2 signaling pathway and apoptosis in cerebral endothelial cells after ischemic conditions. Stroke 40:1467–1473

    PubMed  CAS  Google Scholar 

  93. Kyriakis JM, Avruch J (2001) Mammalian mitogen-activated protein kinase signal transduction pathways activated by stress and inflammation. Physiol Rev 81:807–869

    PubMed  CAS  Google Scholar 

  94. Dhanasekaran DN, Reddy EP (2008) JNK signaling in apoptosis. Oncogene 27:6245–6251

    PubMed  CAS  Google Scholar 

  95. Deng Y, Ren X, Yang L, Lin Y, Wu X (2003) A JNK-dependent pathway is required for TNFα-induced apoptosis. Cell 115:61–70

    PubMed  CAS  Google Scholar 

  96. Tournier C, Hess P, Yang DD, Xu J, Turner TK, Nimnual A, Bar-Sagi D, Jones SN, Flavell RA, Davis RJ (2000) Requirement of JNK for stress-induced activation of the cytochrome c-mediated death pathway. Science 288:870–874

    PubMed  CAS  Google Scholar 

  97. Dolado I, Nebreda AR (2008) Regulation of tumorigenesis by p38αMAP kinase. Topics in Current Genetics: Stress-Activated Protein Kinases 20:99–128

    CAS  Google Scholar 

  98. Karahashi H, Michelsen KS, Arditi M (2009) Lipopolysaccharide-induced apoptosis in transformed bovine brain endothelial cells and human dermal microvessel endothelial cells: the role of JNK. J Immunol 182:7280–7286

    PubMed  CAS  Google Scholar 

  99. Yatsushige H, Yamaguchi-Okada M, Zhou C, Calvert JW, Cahill J, Colohan ART, Zhang JH (2008) Inhibition of c-Jun N-terminal kinase pathway attenuates cerebral vasospasm after experimental subarachnoid hemorrhage through the suppression of apoptosis. In: Kiris T, Zhang JH (eds) Cerebral vasospasm new strategies in research and treatment, vol 104. Springer, Vienna, pp 27–31

    Google Scholar 

  100. Yin KJ, Lee J-M, Chen SD, Xu J, Hsu CY (2002) Amyloid-β induces Smac release via AP-1/Bim activation in cerebral endothelial cells. J Neurosci 22:9764–9770

    PubMed  CAS  Google Scholar 

  101. Lee S-R, Lo EH (2003) Interactions between p38 mitogen-activated protein kinase and caspase-3 in cerebral endothelial cell death after hypoxia-reoxygenation. Stroke 34:2704–2709

    PubMed  CAS  Google Scholar 

  102. Rush S, Khan G, Bamisaiye A, Bidwell P, Leaver HA, Rizzo MT (2007) C-jun amino-terminal kinase and mitogen activated protein kinase 1/2 mediate hepatocyte growth factor-induced migration of brain endothelial cells. Exp Cell Res 313:121–132

    PubMed  CAS  Google Scholar 

  103. Hattori K, Naguro I, Runchel C, Ichijo H (2009) The roles of ASK family proteins in stress responses and diseases. Cell Commun Signal 7:1–10

    Google Scholar 

  104. Hsu M-J, Hsu CY, Chen B-C, Chen M-C, Ou G, Lin C-H (2007) Apoptosis signal-regulating kinase 1 in amyloid β peptide-induced cerebral endothelial cell apoptosis. J Neurosci 27:5719–5729

    PubMed  CAS  Google Scholar 

  105. Yin K-J, Hsu CY, Hu X-Y, Chen H, Chen S-W, Xu J, Lee J-M (2006) Protein phosphatase 2A regulates Bim expression via the Akt/FKHRL1 signaling pathway in amyloid-β peptide-induced cerebrovascular endothelial cell death. J Neurosci 26:2290–2299

    PubMed  CAS  Google Scholar 

  106. Mancuso MR, Kuhnert F, Kuo CJ (2008) Developmental angiogenesis of the central nervous system. Lymphat Res Biol 6:3–4

    Google Scholar 

  107. Plate KH (1999) Mechanisms of angiogenesis in the brain. J Neuropathol Exp Neurol 58:313–320

    PubMed  CAS  Google Scholar 

  108. Conway ME, Collen D, Carmeliet P (2001) Molecular mechanisms of blood vessel growth. Cardiovasc Res 49:507–521

    PubMed  CAS  Google Scholar 

  109. Hirschi KK, Rohovsky SA, D’Amore PA (1997) Cell–cell interactions in vessel assembly: a model for the fundamentals of vascular remodelling. Transpl Immunol 5:177–178

    PubMed  CAS  Google Scholar 

  110. Louissaint A Jr, Rao S, Leventhal C, Goldman SA (2002) Coordinated interaction of neurogenesis and angiogenesis in the adult songbird brain. Cell 34:945–960

    CAS  Google Scholar 

  111. Ohab JJ, Fleming S, Blesch A, Carmichael ST (2006) A neurovascular niche for neurogenesis after stroke. J Neurosci 26:13007–13016

    PubMed  CAS  Google Scholar 

  112. Shyu W-C, Lin S-Z, Chiang M-F, Su C-Y, Li H (2006) Intracerebral peripheral blood stem cell (CD34+) implantation induces neuroplasticity by enhancing β1 integrin-mediated angiogenesis in chronic stroke rats. J Neurosci 26:3444–3453

    PubMed  CAS  Google Scholar 

  113. Chavakis E, Dimmeler S (2002) Regulation of endothelial cell survival and apoptosis during angiogenesis. Arterioscler Thromb Vasc Biol 22:887–893

    PubMed  CAS  Google Scholar 

  114. Giordano FJ, Johnson RS (2001) Angiogenesis: the role of the microenvironment in flipping the switch. Curr Opin Genet Dev 11:35–40

    PubMed  CAS  Google Scholar 

  115. Tertemiz F, Kayisli UA, Arici A, Demir R (2005) Apoptosis contributes to vascular lumen formation and vascular branching in human placental vasculogenesis. Biol Reprod 72:727–735

    PubMed  CAS  Google Scholar 

  116. Weihua Z, Tsan R, Schroit AJ, Fidler IJ (2005) Apoptotic cells initiate endothelial cell sprouting via electrostatic signaling. Cancer Res 65:11529–11535

    PubMed  CAS  Google Scholar 

  117. Xing C, Lee S, Kim WJ, Wang H, Yang Y-G, Ning MM, Wang X, Lo EH (2009) Neurovascular effects of CD47 signaling: promotion of cell death, inflammation, and suppression of angiogenesis in brain endothelial cells in vitro. J Neurosci Res 87:2571–2577

    PubMed  CAS  Google Scholar 

  118. Jiménez B, Volpert OV, Crawford SE, Febbraio M, Silverstein RL, Bouck N (2000) Signals leading to apoptosis-dependent inhibition of neovascularization by thrombospondin-1. Nat Med 6:41–48

    PubMed  Google Scholar 

  119. Nag S, Papneja T, Venugopalan R, Stewart DJ (2005) Increased angiopoietin-2 expression is associated with endothelial apoptosis and blood–brain barrier breakdown. Lab Invest 85:1189–1198

    PubMed  CAS  Google Scholar 

  120. Deininger MH, Fimmen BA, Thal DR, Schluesener HJ, Meyermann R (2002) Aberrant neuronal and paracellular deposition of endostatin in brains of patients with Alzheimer’s disease. J Neurosci 22:10621–10626

    PubMed  CAS  Google Scholar 

  121. Hossman KA (1994) Viability thresholds and the penumbra of focal ischemia. Ann Neurol 36:557–565

    Google Scholar 

  122. Nagasawa H, Kogure K (1989) Correlation between cerebral blood flow and histologic changes in a new rat model of middle cerebral artery occlusion. Stroke 20:1037–1043

    PubMed  CAS  Google Scholar 

  123. Cheng YD, Al-Khoury L, Zivin JA (2004) Neuroprotection for ischemic stroke: two decade of success and failure. NeuroRx 1:36–45

    PubMed  Google Scholar 

  124. Zubkov AY, Aoki K, Parent AD, Zhang JH (2002) Preliminary study of the effects of caspase inhibitors on vasospasm in dog penetrating arteries. Life Sci 70:3007–3018

    PubMed  CAS  Google Scholar 

  125. Gules I, Satoh M, Nanda A, Zhang JH (2003) Apoptosis, blood–brain barrier, and subarachnoid hemorrhage. Acta Neurochir Suppl 86:483–487

    PubMed  CAS  Google Scholar 

  126. Huang J, van Gelder JM (2002) The probability of sudden death from rupture of intracranial aneurysm: a meta analysis. Neurosurgery 51:1101–1105

    PubMed  Google Scholar 

  127. Meguro T, Chen B, Lancon J, Zhang JH (2001) Oxyhemoglobin induces caspase-mediated cell death in cerebral endothelial cells. J Neurochem 77:1128–1135

    PubMed  CAS  Google Scholar 

  128. Kolias AG, Sen J, Belli A (2008) Pathogenesis of cerebral vasospam following aneurismal subarachnoid hemorrhage: putative mechanisms and novel approaches. J Neurosci Res 87:1–11

    Google Scholar 

  129. Park S, Yamaguchi M, Zhou C, Calvert JW, Tang J, Zhang JH (2004) Neurovascular protection reduces early brain injury after subaracnoid hemorrhage. Stroke 35:2412–2417

    PubMed  CAS  Google Scholar 

  130. Rigamonti D, Hadley MN, Drayer BP, Johnson PC, Hoenig-Rigamonti K, Knight JT, Spetzler RF (1998) Cerebral cavernous malformations: incidence and familial occurrence. N Engl J Med 319:343–347

    Article  Google Scholar 

  131. Guclu B, Ozturk AK, Pricola KL, Bilguvar K, Shin D, O’Roak BJ, Gunel M (2005) Mutations in apoptosis-related gene, PDCD10, cause cerebral cavernous malformation 3. Neurosurgery 57:1008–1013

    PubMed  Google Scholar 

  132. Chen L, Tanriover G, Yano H, Friedlander R, Louvi A, Gunel M (2009) Apoptotic functions of PDCD10/CCM3, the gene mutated in cerebral cavernous malformation 3. Stroke 40:1474–1481

    PubMed  Google Scholar 

  133. Scheibel AB, Duong TH, Jacob R (1989) Alzheimer’s disease as a capillary dementia. Ann Med 21:103–107

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Shannon Wilson, a volunteer student in M.T.R.’s laboratory, for her assistance during the preparation of this manuscript and Christopher Brown from the Department of Visual Media at Indiana University School of Medicine.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Teresa Rizzo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rizzo, M.T., Leaver, H.A. Brain Endothelial Cell Death: Modes, Signaling Pathways, and Relevance to Neural Development, Homeostasis, and Disease. Mol Neurobiol 42, 52–63 (2010). https://doi.org/10.1007/s12035-010-8132-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-010-8132-6

Keyword

Navigation

-