Skip to main content

Combination of Detailed CFD Simulations Using the Lattice Boltzmann Method and Experimental Measurements Using the NMR/MRI Technique

  • Conference paper
High Performance Computing in Science and Engineering’ 04

Abstract

In the last decades, tremendous progress has been made in the area of numerical methods and computer technology but also new experimental techniques evolved and have been transferred to new application areas. This article describes the combination of two recent and innovative techniques. On the numerical side, the lattice Boltzmann method (LBM) is used for detailed simulations of the flow in complicated 3-D structures. On the experimental side, the principles of nuclear magnetic resonance (NMR) are exploited to scan the 3-D structure of arbitrary objects (e.g. random packings of spheres) with a resolution of about 0.1 mm or better (magnetic resonance imaging, MRI) and to obtain information about the velocity of the fluid in selected planes of the same object. The combination of both methods allows for the first time with justifiable effort to investigate in 3-D and on a local level exactly the same arbitrarily complicated structures experimentally and numerically. This can be utilized first to validate the methods and results mutually, second to detect artifacts, but also third to replace or complement experimental investigations by “numerical experiments” on high performance computers which can provide a larger amount of detailed 3-D information with less effort.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

') var buybox = document.querySelector("[data-id=id_"+ timestamp +"]").parentNode var buyingOptions = buybox.querySelectorAll(".buying-option") ;[].slice.call(buyingOptions).forEach(initCollapsibles) var buyboxMaxSingleColumnWidth = 480 function initCollapsibles(subscription, index) { var toggle = subscription.querySelector(".buying-option-price") subscription.classList.remove("expanded") var form = subscription.querySelector(".buying-option-form") var priceInfo = subscription.querySelector(".price-info") var buyingOption = toggle.parentElement if (toggle && form && priceInfo) { toggle.setAttribute("role", "button") toggle.setAttribute("tabindex", "0") toggle.addEventListener("click", function (event) { var expandedBuyingOptions = buybox.querySelectorAll(".buying-option.expanded") var buyboxWidth = buybox.offsetWidth ;[].slice.call(expandedBuyingOptions).forEach(function(option) { if (buyboxWidth <= buyboxMaxSingleColumnWidth && option != buyingOption) { hideBuyingOption(option) } }) var expanded = toggle.getAttribute("aria-expanded") === "true" || false toggle.setAttribute("aria-expanded", !expanded) form.hidden = expanded if (!expanded) { buyingOption.classList.add("expanded") } else { buyingOption.classList.remove("expanded") } priceInfo.hidden = expanded }, false) } } function hideBuyingOption(buyingOption) { var toggle = buyingOption.querySelector(".buying-option-price") var form = buyingOption.querySelector(".buying-option-form") var priceInfo = buyingOption.querySelector(".price-info") toggle.setAttribute("aria-expanded", false) form.hidden = true buyingOption.classList.remove("expanded") priceInfo.hidden = true } function initKeyControls() { document.addEventListener("keydown", function (event) { if (document.activeElement.classList.contains("buying-option-price") && (event.code === "Space" || event.code === "Enter")) { if (document.activeElement) { event.preventDefault() document.activeElement.click() } } }, false) } function initialStateOpen() { var buyboxWidth = buybox.offsetWidth ;[].slice.call(buybox.querySelectorAll(".buying-option")).forEach(function (option, index) { var toggle = option.querySelector(".buying-option-price") var form = option.querySelector(".buying-option-form") var priceInfo = option.querySelector(".price-info") if (buyboxWidth > buyboxMaxSingleColumnWidth) { toggle.click() } else { if (index === 0) { toggle.click() } else { toggle.setAttribute("aria-expanded", "false") form.hidden = "hidden" priceInfo.hidden = "hidden" } } }) } initialStateOpen() if (window.buyboxInitialised) return window.buyboxInitialised = true initKeyControls() })()

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. J. Bernsdorf, G. Brenner, T. Zeiser, and P. Lammers. Perspectives of the lattice Boltzmann method for industrial applications. In C. Jenssen, T. Kvamdal, H. Andersson, B. Pettersen, A. Ecer, J. Periaux, N. Satofuka, and P. Fox, editors, Parallel Computational Fluid Dynamics 2000, Tends and Applications. Proceedings of the Parallel CFD 2000 Conference, May 22–25, Trondheim, Norway, pages 367–373. Elsevier, 2001.

    Google Scholar 

  2. J. Bernsdorf, F. Durst, and M. Schäfer. Comparison of cellular automata and finite volume techniques for simulation of incompressible flows in complex geometries. Int. J. Numer. Meth. Fluids, 29(3):251–264, 1999.

    Article  MATH  Google Scholar 

  3. J. Bernsdorf, O. Günnewig, W. Hamm, and M. Münker. Strömungsberechnung in porösen Medien. GIT Labor-Fachzeitschrift, 4:387–390, 1999.

    Google Scholar 

  4. V. Bhandari. Detailed investigations of transport properties in complex reactor components. Master’s thesis, Lehrstuhl für Strömungsmechanik, Universität Erlangen-Nürnberg, 2002.

    Google Scholar 

  5. P. Bhatnagar, E.P. Gross, and M. K. Krook. A model for collision processes in gases. I. small amplitude processes in charged and neutral one-component systems. Phys. Rev., 94(3):511–525, 1954.

    Article  MATH  Google Scholar 

  6. M. Bouzidi, M. Firdaouss, and P. Lallemand. Momentum transfer of a Boltzmann-lattice fluid with boundaries. Phys. Fluids, 13(11):3452–3459, 2001.

    Article  Google Scholar 

  7. G. Brenner, T. Zeiser, and F. Durst. Simulation komplexer fluider Trans-portvorgänge in porösen Medien. Chem.-Ing.-Tech., 74(11):1533–1542, 2002.

    Article  Google Scholar 

  8. G. Brenner, T. Zeiser, P. Lammers, J. Bernsdorf, and F. Durst. Applications of lattice Boltzmann methods in CFD. ERCOFTAC bulletin, 50:29–34, 2001.

    Google Scholar 

  9. P. Callaghan. Principles of Nuclear Magnetic Resonance Microscopy. Clarendon, Oxford, 1991.

    Google Scholar 

  10. S. Chapman and T. G. Cowling. The Mathematical Theory of Non-Uniform Gases. Cambridge University Press, 1995.

    Google Scholar 

  11. S. Chen and G. D. Doolen. Lattice Boltzmann method for fluid flows. Annu. Rev. Fluid Mech., 30:329–364, 1998.

    Article  MathSciNet  Google Scholar 

  12. F. Deserno, G. Hager, F. Brechtefeld, and G. Wellein. Performance of scientific applications on modern supercomputers. In S. Wagner, W. Hanke, A. Bode, and F. Durst, editors, High Performance Computing in Science and Engineering, Munich 2004, pages 3–25. Springer, 2004.

    Google Scholar 

  13. S. Donath. On optimized implementations of the lattice Boltzmann method on contemporary high performance architectures. Bachelor’s thesis, Chair of System Simulation, University of Erlangen-Nuremberg, Germany, 2004.

    Google Scholar 

  14. L. F. Gladden. Magnetic resonance: Ongoing and future role in chemical engineering research. AIChE Journal, 49(1):2–9, 2003.

    Article  Google Scholar 

  15. O. Filippova and D. Hänel. Grid refinement for lattice-BGK models. J. Comput. Phys., 147:219–228, 1998.

    Article  MATH  Google Scholar 

  16. H. Freund, T. Zeiser, F. Huber, E. Klemm, G. Brenner, F. Durst, and G. Emig. Numerical simulations of single phase reacting flows in randomly packed fixed-bed reactors and experimental validation. Chem. Eng. Sci., 58(3–6):903–910, 2003.

    Article  Google Scholar 

  17. U. Frisch, D. d’Humières, B. Hasslacher, P. Lallemand, Y. Pomeau, and J.-P. Rivert. Lattice gas hydrodynamics in two and three dimensions. Complex Systems, 1:649–707, 1987.

    MATH  MathSciNet  Google Scholar 

  18. U. Frisch, B. Hasslacher, and Y. Pomeau. Lattice-gas automata for the Navier-Stokes Equation. Phys. Rev. Lett., 56(14):1505–1508, 1986.

    Article  Google Scholar 

  19. L.F. Gladden and P. Alexander. Application of nuclear magnetic resonance imaging in process engineering. Meas. Sci. Technol., 7:423–435, 1996.

    Article  Google Scholar 

  20. J. Hardy, O. de Pazzis, and Y. Pomeau. Molecular dynamics of a classical gas: Transport properties and time correlation functions. Phys. Rev. A, 13(5):1949–1961, 1976.

    Article  Google Scholar 

  21. X. He and L.-S. Luo. Lattice Boltzmann model for the incompressible Navier-Stokes equation. J. Stat. Phys., 88(3/4):927–944, 1997.

    Article  MATH  MathSciNet  Google Scholar 

  22. X. He and L.-S. Luo. A priori derivation of the lattice Boltzmann equation. Phys. Rev. E, 55(6):R6333–R6336, 1997.

    Article  Google Scholar 

  23. X. He and L.-S. Luo. Theory of the lattice Boltzmann method: From the Boltzmann equation to the lattice Boltzmann equation. Phys. Rev. E, 56(6):6811–6817, 1997.

    Article  Google Scholar 

  24. C. Heinen. MRI Untersuchungen zur Strömung newtonscher wad nicht-newtonscher Fluide in porösen Strukturen. PhD thesis, Universtität Karlsruhe (TH), 2004.

    Google Scholar 

  25. T. Inamuro, M. Yoshino, and F. Ogino. A non-slip boundary condition for lattice Boltzmann simulations. Phys. Fluids, 7(12):2928–2930, 1995.

    Article  MATH  Google Scholar 

  26. M. Krafczyk, J. Tölke, and L.-S. Luo. Large-eddy simulations with a multiple-relaxation-time LBE model. Int. J. Mod. Phys. B, 17(1&2):33–40, 2003.

    Article  Google Scholar 

  27. A. Krischke. Modellierung und experimentelle Untersuchung von Transport-prozessen in durchströmten Schüttungen, volume 713 of VDI Fortschritt-Berichte, Reihe 3. VDI-Verlag, Düsseldorf, 2001.

    Google Scholar 

  28. A. J. C. Ladd. Numerical simulations of particulate suspensions via a discrete Boltzmann equation. Part 1. Theoretical foundation. J. Fluid Mech., 271:285–309, 1994.

    Article  MATH  MathSciNet  Google Scholar 

  29. W. B. Lindquist. 3DMA-Rock. http://www.ams.sunysb.edu/~lindquis/3dma/3dma_rock/3dma_rock.html.

    Google Scholar 

  30. Y.H. Qian, D. d’Humières, and P. Lallemand. Lattice BGK models for Navier-Stokes equation. Europhys. Lett, 17(6):479–484, 1992.

    Google Scholar 

  31. S. Succi. The Lattice Boltzmann Equation — For Fluid Dynamics and Beyond. Clarendon Press, 2001.

    Google Scholar 

  32. V. Vassilev. Analyse experimentell (mittels MRI/NMR) oder numerisch (durch LBM) ermittelter Geschwindigkeitsfelder poröser Strukturen. Bachelor’s thesis, Lehrstuhl für Strömungsmechanik, Universität Erlangen-Nürnberg, 2003.

    Google Scholar 

  33. D.A. Wolf-Gladrow. Lattice-Gas Cellular Automata and Lattice Boltzmann Models, volume 1725 of Lecture Notes in Mathematics. Springer, Berlin, 2000.

    MATH  Google Scholar 

  34. D. Yu, R. Mei, L.-S. Luo, and W. Shyy. Viscous flow computations with the method of lattice Boltzmann equation. Progr. Aero. Sci., 39:329–367, 2003.

    Article  Google Scholar 

  35. H. Yu, L.-S. Luo, and S. S. Girimaji. Scalar mixing and chemical reaction simulations using lattice Boltzmann method. Int. J. Comp. Eng. Sci., 3(1):73–87, 2003.

    Article  Google Scholar 

  36. T. Zeiser, M. Steven, H. Freund, P. Lammers, G. Brenner, F. Durst, and J. Bernsdorf. Analysis of the flow field and pressure drop in fixed bed reactors with the help of lattice Boltzmann simulations. Phil. Trans. R. Soc. Lond. A, 360(1792):507–520, 2002.

    Article  MATH  Google Scholar 

  37. T. Zeiser, G. Wellein, G. Hager, S. Donath, F. Deserno, P. Lammers, and M. Wierse. Optimized lattice Boltzmann kernels as testbeds for processor performance. Technical report, Regionales Rechenzentrum Erlangen, May 2004.

    Google Scholar 

  38. T. Zeiser, G. Wellein, and P. Lammers. Is there still a need for tailored HPC systems or can we go with commodity off-the-shelf clusters — some comments based on performance measurements using a lattice Boltzmann flow solver. submitted to InSiDE, the German HPC Journal, 2004.

    Google Scholar 

  39. D. P. Ziegler. Boundary conditions for lattice Boltzmann simulations. J. Stat. Phys., 71(5/6):1171–1177, 1993.

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Zeiser .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Zeiser, T. (2005). Combination of Detailed CFD Simulations Using the Lattice Boltzmann Method and Experimental Measurements Using the NMR/MRI Technique. In: Krause, E., Jäger, W., Resch, M. (eds) High Performance Computing in Science and Engineering’ 04. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-26589-9_26

Download citation

Publish with us

Policies and ethics

Navigation

-