Skip to main content

Formulation and Characterization of Antithrombin Perfluorocarbon Nanoparticles

  • Protocol
  • First Online:
Nanoparticles in Biology and Medicine

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2118))

  • 1554 Accesses

Abstract

Thrombin, a major protein involved in the clotting cascade by the conversion of inactive fibrinogen to fibrin, plays a crucial role in the development of thrombosis. Antithrombin nanoparticles enable site-specific anticoagulation without increasing bleeding risk. Here we outline the process of making and the characterization of bivalirudin and d-phenylalanyl-l-prolyl-l-arginyl-chloromethyl ketone (PPACK) nanoparticles. Additionally, the characterization of these nanoparticles, including particle size, zeta potential, and quantification of PPACK/bivalirudin loading, is also described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (Canada)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (Canada)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (Canada)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

') var buybox = document.querySelector("[data-id=id_"+ timestamp +"]").parentNode var buyingOptions = buybox.querySelectorAll(".buying-option") ;[].slice.call(buyingOptions).forEach(initCollapsibles) var buyboxMaxSingleColumnWidth = 480 function initCollapsibles(subscription, index) { var toggle = subscription.querySelector(".buying-option-price") subscription.classList.remove("expanded") var form = subscription.querySelector(".buying-option-form") var priceInfo = subscription.querySelector(".price-info") var buyingOption = toggle.parentElement if (toggle && form && priceInfo) { toggle.setAttribute("role", "button") toggle.setAttribute("tabindex", "0") toggle.addEventListener("click", function (event) { var expandedBuyingOptions = buybox.querySelectorAll(".buying-option.expanded") var buyboxWidth = buybox.offsetWidth ;[].slice.call(expandedBuyingOptions).forEach(function(option) { if (buyboxWidth <= buyboxMaxSingleColumnWidth && option != buyingOption) { hideBuyingOption(option) } }) var expanded = toggle.getAttribute("aria-expanded") === "true" || false toggle.setAttribute("aria-expanded", !expanded) form.hidden = expanded if (!expanded) { buyingOption.classList.add("expanded") } else { buyingOption.classList.remove("expanded") } priceInfo.hidden = expanded }, false) } } function hideBuyingOption(buyingOption) { var toggle = buyingOption.querySelector(".buying-option-price") var form = buyingOption.querySelector(".buying-option-form") var priceInfo = buyingOption.querySelector(".price-info") toggle.setAttribute("aria-expanded", false) form.hidden = true buyingOption.classList.remove("expanded") priceInfo.hidden = true } function initKeyControls() { document.addEventListener("keydown", function (event) { if (document.activeElement.classList.contains("buying-option-price") && (event.code === "Space" || event.code === "Enter")) { if (document.activeElement) { event.preventDefault() document.activeElement.click() } } }, false) } function initialStateOpen() { var buyboxWidth = buybox.offsetWidth ;[].slice.call(buybox.querySelectorAll(".buying-option")).forEach(function (option, index) { var toggle = option.querySelector(".buying-option-price") var form = option.querySelector(".buying-option-form") var priceInfo = option.querySelector(".price-info") if (buyboxWidth > buyboxMaxSingleColumnWidth) { toggle.click() } else { if (index === 0) { toggle.click() } else { toggle.setAttribute("aria-expanded", "false") form.hidden = "hidden" priceInfo.hidden = "hidden" } } }) } initialStateOpen() if (window.buyboxInitialised) return window.buyboxInitialised = true initKeyControls() })()

Institutional subscriptions

Similar content being viewed by others

References

  1. Fareed J, Iqbal O, Cunanan J et al (2008) Changing trends in anti-coagulant therapies are heparins and oral anti-coagulants challenged? Int Angiol 27:176–192

    CAS  PubMed  Google Scholar 

  2. Palekar RU, Jallouk AP, Myerson JW et al (2016) Inhibition of thrombin with PPACK-nanoparticles restores disrupted endothelial barriers and attenuates thrombotic risk in experimental atherosclerosis. Arterioscler Thromb Vasc Biol 36:446–455

    Article  CAS  Google Scholar 

  3. Myerson J, He L, Lanza G et al (2011) Thrombin-inhibiting perfluorocarbon nanoparticles provide a novel strategy for the treatment and magnetic resonance imaging of acute thrombosis. J Thromb Haemost 9:1292–1300

    Article  CAS  Google Scholar 

  4. Chen J, Vemuri C, Palekar RU et al (2015) Antithrombin nanoparticles improve kidney reperfusion and protect kidney function after ischemia-reperfusion injury. Am J Physiol Renal Physiol 308:F765–F773

    Article  CAS  Google Scholar 

  5. Myerson JW, He L, Allen JS et al (2014) Thrombin-inhibiting nanoparticles rapidly constitute versatile and detectable anticlotting surfaces. Nanotechnology 25:395101

    Article  Google Scholar 

  6. Srivastava S, Goswami LN, Dikshit DK (2005) Progress in the design of low molecular weight thrombin inhibitors. Med Res Rev 25:66–92

    Article  CAS  Google Scholar 

  7. Weitz JI, Buller HR (2002) Direct thrombin inhibitors in acute coronary syndromes: present and future. Circulation 105:1004–1011

    Article  CAS  Google Scholar 

  8. Zhang H, Zhang L, Myerson J et al (2011) Quantifying the evolution of vascular barrier disruption in advanced atherosclerosis with semipermeant nanoparticle contrast agents. PLoS One 6:e26385

    Article  CAS  Google Scholar 

  9. Chen J, Pan H, Lanza GM et al (2013) Perfluorocarbon nanoparticles for physiological and molecular imaging and therapy. Adv Chronic Kidney Dis 20:466–478

    Article  Google Scholar 

  10. Hu L, Chen J, Yang X et al (2014) Assessing intrarenal nonperfusion and vascular leakage in acute kidney injury with multinuclear 1H/19F MRI and perfluorocarbon nanoparticles. Magn Reson Med 71:2186–2196

    Article  CAS  Google Scholar 

  11. Kaneda MM, Caruthers S, Lanza GM et al (2009) Perfluorocarbon nanoemulsions for quantitative molecular imaging and targeted therapeutics. Ann Biomed Eng 37:1922–1933

    Article  Google Scholar 

  12. Moore JK, Chen J, Pan H et al (2018) Quantification of vascular damage in acute kidney injury with fluorine magnetic resonance imaging and spectroscopy. Magn Reson Med 79:3144–3153

    Article  CAS  Google Scholar 

  13. Morawski AM, Winter PM, Yu X et al (2004) Quantitative “magnetic resonance immunohistochemistry” with ligand-targeted 19F nanoparticles. Magn Reson Med 52:1255–1262

    Article  CAS  Google Scholar 

  14. Neubauer AM, Sim H, Winter PM et al (2008) Nanoparticle pharmacokinetic profiling in vivo using magnetic resonance imaging. Magn Reson Med 60:1353–1361

    Article  Google Scholar 

  15. Palekar RU, Jallouk AP, Goette MJ et al (2015) Quantifying progression and regression of thrombotic risk in experimental atherosclerosis. FASEB J 29:3100–3109

    Article  CAS  Google Scholar 

  16. Wickline SA, Mason RP, Caruthers SD et al (2010) Fluorocarbon agents for multimodal molecular imaging and targeted therapeutics. In: Weissleder R, Ross BD, Rehemtulla A, Gambhir SS (eds) Molecular imaging: principles and practice. Peoples Medical Publishing House, Beijing

    Google Scholar 

  17. Waters EA, Chen J, Allen JS et al (2008) Detection and quantification of angiogenesis in experimental valve disease with integrin-targeted nanoparticles and 19-fluorine MRI/MRS. J Cardiovasc Magn Reson 10:43

    Article  Google Scholar 

Download references

Acknowledgments

The manuscript was edited by Enrico Ferrari and Mikhail Soloviev.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samuel A. Wickline .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Wilson, A.J. et al. (2020). Formulation and Characterization of Antithrombin Perfluorocarbon Nanoparticles. In: Ferrari, E., Soloviev, M. (eds) Nanoparticles in Biology and Medicine. Methods in Molecular Biology, vol 2118. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0319-2_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0319-2_8

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0318-5

  • Online ISBN: 978-1-0716-0319-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics

Navigation

-