Skip to main content

Curcumin, Oxidative Stress, and Cancer Therapy

  • Chapter
  • First Online:
Oxidative Stress in Cancer Biology and Therapy

Abstract

Curcumin is the active ingredient in turmeric, a traditional herbal remedy and dietary spice. Curcumin has numerous beneficial medicinal properties, including cancer chemopreventive and cancer chemotherapeutic activity. Curcumin displays complex redox activity and functions as both pro- and antioxidant. These opposing activities are observed in cell-free systems, cultured cells, and in intact organisms. The redox properties of curcumin are a key feature of its activity and are due to the inherent chemical activities of the molecule, as well as its ability to induce multiple signaling pathways. This chapter provides an overview of the in vitro and in vivo studies that links curcumin’s redox activity to its chemopreventive and chemotherapeutic effects. It also highlights the need for caution in combining curcumin with certain chemotherapies or in the setting of selected preexisting conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (Canada)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (Canada)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (Canada)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

') var buybox = document.querySelector("[data-id=id_"+ timestamp +"]").parentNode var buyingOptions = buybox.querySelectorAll(".buying-option") ;[].slice.call(buyingOptions).forEach(initCollapsibles) var buyboxMaxSingleColumnWidth = 480 function initCollapsibles(subscription, index) { var toggle = subscription.querySelector(".buying-option-price") subscription.classList.remove("expanded") var form = subscription.querySelector(".buying-option-form") var priceInfo = subscription.querySelector(".price-info") var buyingOption = toggle.parentElement if (toggle && form && priceInfo) { toggle.setAttribute("role", "button") toggle.setAttribute("tabindex", "0") toggle.addEventListener("click", function (event) { var expandedBuyingOptions = buybox.querySelectorAll(".buying-option.expanded") var buyboxWidth = buybox.offsetWidth ;[].slice.call(expandedBuyingOptions).forEach(function(option) { if (buyboxWidth <= buyboxMaxSingleColumnWidth && option != buyingOption) { hideBuyingOption(option) } }) var expanded = toggle.getAttribute("aria-expanded") === "true" || false toggle.setAttribute("aria-expanded", !expanded) form.hidden = expanded if (!expanded) { buyingOption.classList.add("expanded") } else { buyingOption.classList.remove("expanded") } priceInfo.hidden = expanded }, false) } } function hideBuyingOption(buyingOption) { var toggle = buyingOption.querySelector(".buying-option-price") var form = buyingOption.querySelector(".buying-option-form") var priceInfo = buyingOption.querySelector(".price-info") toggle.setAttribute("aria-expanded", false) form.hidden = true buyingOption.classList.remove("expanded") priceInfo.hidden = true } function initKeyControls() { document.addEventListener("keydown", function (event) { if (document.activeElement.classList.contains("buying-option-price") && (event.code === "Space" || event.code === "Enter")) { if (document.activeElement) { event.preventDefault() document.activeElement.click() } } }, false) } function initialStateOpen() { var buyboxWidth = buybox.offsetWidth ;[].slice.call(buybox.querySelectorAll(".buying-option")).forEach(function (option, index) { var toggle = option.querySelector(".buying-option-price") var form = option.querySelector(".buying-option-form") var priceInfo = option.querySelector(".price-info") if (buyboxWidth > buyboxMaxSingleColumnWidth) { toggle.click() } else { if (index === 0) { toggle.click() } else { toggle.setAttribute("aria-expanded", "false") form.hidden = "hidden" priceInfo.hidden = "hidden" } } }) } initialStateOpen() if (window.buyboxInitialised) return window.buyboxInitialised = true initKeyControls() })()

Institutional subscriptions

Similar content being viewed by others

Abbreviations

AhR:

Aryl hydrocarbon receptor

AP-1:

Activator protein-1

ARE:

Antioxidant response elements

BaP:

Benz-a-pyrene

BHA:

Butylated hydroxyanisole

BHT:

Butylated hydroxytoluene

CAT:

Catalase

COX-1:

Cyclooxygenase 1

COX-2:

Cyclooxygenase-2

CuZnSOD:

Copper zinc superoxide dismutase

CYPs:

Cytochromes P450

DHC:

Dihydrocurcumin

DMBA:

Dimethylbenzanthracene

EPR:

Electroparamagnetic spectroscopy

EpRE:

Electrophile response element

ERK/MAPK:

Extracellular signal-related kinase/mitogen-activated protein kinase

Fe-NTA:

Ferric nitriloacetic acid

GPx:

Glutathione peroxidase

GSH:

Glutathione

GST:

Glutathione S-transferase

HO-1:

Heme oxygenase-1

HNE:

4-Hydroxy-2-nonenal

iNOS:

Inducible form of nitric oxide synthase

Jak:

Janus family of kinase

Keap1:

Kelch-like ECH associating protein 1

LOOH:

Lipid hydroperoxide

MDA:

Malondialdehyde

MMPs:

Matrix metalloproteinase

MnSOD:

Manganese-containing superoxide dismutase

mTOR:

Mammalian target of rapamycin

NAC:

N-acetyl-cysteine

NFκβ:

Factor kappa B

Nrf2:

Nuclear factor-erythroid 2-related factor 2

NQO1:

NAD(P)H:quinone oxidoreductase-1

ODC:

Ornithine decarboxylase

8-OHdG:

8-Hydroxy-2′-deoxyguanosine

PKC:

Protein kinase C

PI3K:

Phosphatidylinositol 3-kinase

ROS:

Reactive oxygen species

STAT:

Signal transducer and activator of transcription

THC:

Tetrahydrocurcumin

TNF-α:

Tumor necrosis factor-alpha

TRAIL:

TNF-related apoptosis inducing ligand

References

  1. Halliwell B, Gutteridge JM (2007) Free radicals in biology and medicine. Oxford University Press, New York

    Google Scholar 

  2. Bengmark S, Mesa MD, Gil A (2009) Plant-derived health: the effects of turmeric and curcuminoids. Nutr Hosp 24:273–281

    PubMed  CAS  Google Scholar 

  3. Valko M, Rhodes CJ, Moncol J, Izakovic M, Mazur M (2006) Free radicals, metals and antioxidants in oxidative stress-induced cancer. Chem Biol Interact 160:1–40

    Article  PubMed  CAS  Google Scholar 

  4. Halliwell B (2007) Oxidative stress and cancer: have we moved forward? Biochem J 401:1–11

    Article  PubMed  CAS  Google Scholar 

  5. Lopez-Lazaro M (2007) Dual role of hydrogen peroxide in cancer: possible relevance to cancer chemoprevention and therapy. Cancer Lett 252:1–8

    Article  PubMed  CAS  Google Scholar 

  6. Valko M, Leibfritz D, Moncol J, Cronin MT, Mazur M, Telser J (2007) Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol 39:44–84

    Article  PubMed  CAS  Google Scholar 

  7. Burdon RH (1995) Superoxide and hydrogen peroxide in relation to mammalian cell proliferation. Free Radic Biol Med 18:775–794

    Article  PubMed  CAS  Google Scholar 

  8. Duvoix A, Blasius R, Delhalle S, Schnekenburger M, Morceau F, Henry E, Dicato M, Diederich M (2005) Chemopreventive and therapeutic effect of curcumin. Cancer Lett 223:181–190

    Article  PubMed  CAS  Google Scholar 

  9. Hatcher H, Planalp R, Cho J, Torti FM, Torti SV (2008) Curcumin: from ancient medicine to current clinical trials. Cell Mol Life Sci 65:1631–1652

    Article  PubMed  CAS  Google Scholar 

  10. Shalini VK, Srinivas L (1987) Lipid peroxide induced DNA damage: protection by turmeric (Curcuma longa). Mol Cell Biochem 77:3–10

    Article  PubMed  CAS  Google Scholar 

  11. Khopde S, Priyadarsini KI, Venkatesan P, Rao MN (1999) Free radical scavenging ability and antioxidant efficiency of curcumin and its substituted analogue. Biophys Chem 80:85–91

    Article  CAS  Google Scholar 

  12. Reddy AC, Lokesh BR (1992) Studies on spice principles as antioxidants in the inhibition of lipid peroxidation of rat liver microsomes. Mol Cell Biochem 111:117–124

    PubMed  CAS  Google Scholar 

  13. Reddy A, Lokesh BR (1994) Effect of dietary turmeric (Curcuma longa) on iron-induced lipid peroxidation in the rat liver. Food Chem Toxicol 32:279–283

    Article  PubMed  CAS  Google Scholar 

  14. Das KC, Das CK (2002) Curcumin (diferuloylmethane), a singlet oxygen ((1)O(2)) quencher. Biochem Biophys Res Commun 295:62–66

    Article  PubMed  CAS  Google Scholar 

  15. Priyadarsini KI (1997) Free radical reactions of curcumin in membrane models. Free Radic Biol Med 23:838–843

    Article  PubMed  CAS  Google Scholar 

  16. Jovanovic SV, Boone CW, Steenken S, Trinoga M, Kaskey RB (2001) How curcumin works preferentially with water soluble antioxidants. J Am Chem Soc 123:3064–3068

    Article  PubMed  CAS  Google Scholar 

  17. Ramsewak RS, DeWitt DL, Nair MG (2000) Cytotoxicity, antioxidant and anti-inflammatory activities of curcumins I–III from Curcuma longa. Phytomedicine 7:303–308

    Article  PubMed  CAS  Google Scholar 

  18. Ruby A, Kuttan G, Babu KD, Rajasekharan KN, Kuttan R (1995) Anti-tumour and antioxidant activity of natural curcuminoids. Cancer Lett 94:79–83

    Article  PubMed  CAS  Google Scholar 

  19. Strimpakos AS, Sharma RA (2008) Curcumin: preventive and therapeutic properties in laboratory studies and clinical trials. Antioxid Redox Signal 10:511–545

    Article  PubMed  CAS  Google Scholar 

  20. Fang J, Lu J, Holmgren A (2005) Thioredoxin reductase is irreversibly modified by curcumin: a novel molecular mechanism for its anticancer activity. J Biol Chem 280:25284–25290

    Article  PubMed  CAS  Google Scholar 

  21. Suzuki M et al (2005) Elucidation of anti-allergic activities of curcumin-related compounds with a special reference to their anti-oxidative activities. Biol Pharm Bull 28:1438–1443

    Article  PubMed  CAS  Google Scholar 

  22. Jovanovic SV, Steenken S, Boone CW, Simic MG (1999) H-atom transfer is a preferred antioxidant mechanism of curcumin. J Am Chem Soc 121:9677–9681

    Article  CAS  Google Scholar 

  23. Barclay LR, Vinqvist MR, Mukai K, Goto H, Hashimoto Y, Tokunaga A, Uno H (2000) On the antioxidant mechanism of curcumin: classical methods are needed to determine antioxidant mechanism and activity. Org Lett 2:2841–2843

    Article  PubMed  CAS  Google Scholar 

  24. Jovanovic S, Boone CW, Steenken S, Trinoga M, Kaskey RB (2001) How curcumin works preferentially with water soluble antioxidants. J Am Chem Soc 123:3064–3068

    Article  PubMed  CAS  Google Scholar 

  25. Priyadarsini KI, Maity DK, Naik GH, Kumar MS, Unnikrishnan MK, Satav JG, Mohan H (2003) Role of phenolic O–H and methylene hydrogen on the free radical reactions and antioxidant activity of curcumin. Free Radic Biol Med 35:475–484

    Article  PubMed  CAS  Google Scholar 

  26. Ammon H, Wahl MA (1991) Pharmacology of Curcuma longa. Planta Med 57:1–7

    Article  PubMed  CAS  Google Scholar 

  27. Ireson C et al (2001) Characterization of metabolites of the chemopreventive agent curcumin in human and rat hepatocytes and in the rat in vivo, and evaluation of their ability to inhibit phorbol ester-induced prostaglandin E2 production. Cancer Res 61:1058–1064

    PubMed  CAS  Google Scholar 

  28. Ireson CR et al (2002) Metabolism of the cancer chemopreventive agent curcumin in human and rat intestine. Cancer Epidemiol Biomarkers Prev 11:105–111

    PubMed  CAS  Google Scholar 

  29. Rahman I, Biswas SK, Kirkham PA (2006) Regulation of inflammation and redox signaling by dietary polyphenols. Biochem Pharmacol 72:1439–1452

    Article  PubMed  CAS  Google Scholar 

  30. Somparn P, Phisalaphong C, Nakornchai S, Unchern S, Morales NP (2007) Comparative antioxidant activities of curcumin and its demethoxy and hydrogenated derivatives. Biol Pharm Bull 30:74–78

    Article  PubMed  CAS  Google Scholar 

  31. Lin JK, Pan MH, Lin-Shiau SY (2000) Recent studies on the biofunctions and biotransformations of curcumin. Biofactors 13:153–158

    Article  PubMed  CAS  Google Scholar 

  32. Mukhopadhyay A, Basu N, Ghatak N, Gujral PK (1982) Anti-inflammatory and irritant activities of curcumin analogues in rats. Agents Actions 12:508–515

    Article  PubMed  CAS  Google Scholar 

  33. Osawa T, Sugiyama Y, Inayoshi M, Kawakishi S (1995) Antioxidative activity of tetrahydrocurcuminoids. Biosci Biotechnol Biochem 59:1609–1612

    Article  PubMed  CAS  Google Scholar 

  34. Sugiyama Y, Kawakishi S, Osawa T (1996) Involvement of the beta-diketone moiety in the antioxidative mechanism of tetrahydrocurcumin. Biochem Pharmacol 52:519–525

    Article  PubMed  CAS  Google Scholar 

  35. Iqbal M, Sharma SD, Okazaki Y, Fujisawa M, Okada S (2003) Dietary supplementation of curcumin enhances antioxidant and phase II metabolizing enzymes in ddY male mice: possible role in protection against chemical carcinogenesis and toxicity. Pharmacol Toxicol 92:33–38

    Article  PubMed  CAS  Google Scholar 

  36. Farombi EO, Ekor M (2006) Curcumin attenuates gentamicin-induced renal oxidative damage in rats. Food Chem Toxicol 44:1443–1448

    Article  PubMed  CAS  Google Scholar 

  37. McNally SJ, Harrison EM, Ross JA, Garden OJ, Wigmore SJ (2007) Curcumin induces heme oxygenase 1 through generation of reactive oxygen species, p38 activation and phosphatase inhibition. Int J Mol Med 19:165–172

    PubMed  CAS  Google Scholar 

  38. Shen G et al (2006) Modulation of nuclear factor E2-related factor 2-mediated gene expression in mice liver and small intestine by cancer chemopreventive agent curcumin. Mol Cancer Ther 5:39–51

    Article  PubMed  CAS  Google Scholar 

  39. Biswas SK, McClure D, Jimenez LA, Megson IL, Rahman I (2005) Curcumin induces glutathione biosynthesis and inhibits NF-kappaB activation and interleukin-8 release in alveolar epithelial cells: mechanism of free radical scavenging activity. Antioxid Redox Signal 7:32–41

    Article  PubMed  CAS  Google Scholar 

  40. Venkatesan N, Punithavathi D, Arumugam V (2000) Curcumin prevents adriamycin nephrotoxicity in rats. Br J Pharmacol 129:231–234

    Article  PubMed  CAS  Google Scholar 

  41. Iqbal M, Okazaki Y, Okada S (2009) Curcumin attenuates oxidative damage in animals treated with a renal carcinogen, ferric nitrilotriacetate (Fe-NTA): implications for cancer prevention. Mol Cell Biochem 324:157–164

    Article  PubMed  CAS  Google Scholar 

  42. Chattopadhyay I, Bandyopadhyay U, Biswas K, Maity P, Banerjee RK (2006) Indomethacin inactivates gastric peroxidase to induce reactive-oxygen-mediated gastric mucosal injury and curcumin protects it by preventing peroxidase inactivation and scavenging reactive oxygen. Free Radic Biol Med 40:1397–1408

    Article  PubMed  CAS  Google Scholar 

  43. Manikandan P, Sumitra M, Aishwarya S, Manohar BM, Lokanadam B, Puvanakrishnan R (2004) Curcumin modulates free radical quenching in myocardial ischaemia in rats. Int J Biochem Cell Biol 36:1967–1980

    Article  PubMed  CAS  Google Scholar 

  44. Toniolo R, Di Narda F, Susmel S, Martelli M, Martelli L, Bontempelli G (2002) Quenching of superoxide ions by curcumin. A mechanistic study in acetonitrile. Ann Chim 92:281–288

    PubMed  CAS  Google Scholar 

  45. Mishra B, Priyadarsini KI, Bhide MK, Kadam RM, Mohan H (2004) Reactions of superoxide radicals with curcumin: probable mechanisms by optical spectroscopy and EPR. Free Radic Res 38:355–362

    Article  PubMed  CAS  Google Scholar 

  46. Lopez-Lazaro M (2008) Anticancer and carcinogenic properties of curcumin: considerations for its clinical development as a cancer chemopreventive and chemotherapeutic agent. Mol Nutr Food Res 52(Suppl 1):S103–S127

    PubMed  Google Scholar 

  47. Kempaiah RK, Srinivasan K (2004) Influence of dietary curcumin, capsaicin and garlic on the antioxidant status of red blood cells and the liver in high-fat-fed rats. Ann Nutr Metab 48:314–320

    Article  PubMed  CAS  Google Scholar 

  48. Balogun E, Hoque M, Gong P, Killeen E, Green CJ, Foresti R, Alam J, Motterlini R (2003) Curcumin activates the haem oxygenase-1 gene via regulation of Nrf2 and the antioxidant-responsive element. Biochem J 371:887–895

    Article  PubMed  CAS  Google Scholar 

  49. Motterlini R, Foresti R, Bassi R, Green CJ (2000) Curcumin, an antioxidant and anti-­inflammatory agent, induces heme oxygenase-1 and protects endothelial cells against oxidative stress. Free Radic Biol Med 28(8):1303–1312

    Article  PubMed  CAS  Google Scholar 

  50. Gaedeke J, Noble NA, Border WA (2005) Curcumin blocks fibrosis in anti-Thy 1 glomerulonephritis through up-regulation of heme oxygenase 1. Kidney Int 68:2042–2049

    Article  PubMed  CAS  Google Scholar 

  51. Ahsan H, Hadi SM (1998) Strand scission in DNA induced by curcumin in the presence of Cu(II). Cancer Lett 124:23–30

    Article  PubMed  CAS  Google Scholar 

  52. Ahsan H, Parveen N, Khan NU, Hadi SM (1999) Pro-oxidant, anti-oxidant and cleavage activities on DNA of curcumin and its derivatives demethoxycurcumin and bisdemethoxycurcumin. Chem Biol Interact 121:161–175

    Article  PubMed  CAS  Google Scholar 

  53. Fang JL, Lu J, Holmgren A (2005) Thioredoxin reductase is irreversibly modified by curcumin: a novel molecular mechanism for its anticancer activity. J Biol Chem 280:25284–25290

    Article  PubMed  CAS  Google Scholar 

  54. Yoshino M et al (2004) Prooxidant activity of curcumin: copper-dependent formation of 8-hydroxy-2′-deoxyguanosine in DNA and induction of apoptotic cell death. Toxicol In Vitro 18:783–789

    Article  PubMed  CAS  Google Scholar 

  55. Bhaumik S, Anjum R, Rangaraj N, Pardhasaradhi BV, Khar A (1999) Curcumin mediated apoptosis in AK-5 tumor cells involves the production of reactive oxygen intermediates. FEBS Lett 456:311–314

    Article  PubMed  CAS  Google Scholar 

  56. Cao J, Jia L, Zhou HM, Liu Y, Zhong LF (2006) Mitochondrial and nuclear DNA damage induced by curcumin in human hepatoma G2 cells. Toxicol Sci 91:476–483

    Article  PubMed  CAS  Google Scholar 

  57. Kang J, Chen J, Shi Y, Jia J, Zhang Y (2005) Curcumin-induced histone hypoacetylation: the role of reactive oxygen species. Biochem Pharmacol 69:1205–1213

    Article  PubMed  CAS  Google Scholar 

  58. Moussavi M, Assi K, Gomez-Munoz A, Salh B (2006) Curcumin mediates ceramide generation via the de novo pathway in colon cancer cells. Carcinogenesis 27:1636–1644

    Article  PubMed  CAS  Google Scholar 

  59. Scott DW, Loo G (2004) Curcumin-induced GADD153 gene up-regulation in human colon cancer cells. Carcinogenesis 25:2155–2164

    Article  PubMed  CAS  Google Scholar 

  60. Su CC, Lin JG, Li TM, Chung JG, Yang JS, Ip SW, Lin WC, Chen GW (2006) Curcumin-induced apoptosis of human colon cancer colo 205 cells through the production of ROS, Ca2+ and the activation of caspase-3. Anticancer Res 26:4379–4389

    PubMed  CAS  Google Scholar 

  61. Syng-Ai C, Kumari AL, Khar A (2004) Effect of curcumin on normal and tumor cells: role of glutathione and bcl-2. Mol Cancer Ther 3:1101–1108

    PubMed  CAS  Google Scholar 

  62. Woo J, Kim YH, Choi YJ, Kim DG, Lee KS, Bae JH, Min DS, Chang JS, Jeong YJ, Lee YH, Park JW, Kwon TK (2003) Molecular mechanisms of curcumin-induced cytotoxicity: induction of apoptosis through generation of reactive oxygen species, down-regulation of Bcl-XL and IAP, the release of cytochrome c and inhibition of Akt. Carcinogenesis 24:1199–1208

    Article  PubMed  CAS  Google Scholar 

  63. Chan WH, Wu HY, Chang WH (2006) Dosage effects of curcumin on cell death types in a human osteoblast cell line. Food Chem Toxicol 44:1362–1371

    Article  PubMed  CAS  Google Scholar 

  64. Woo JH et al (2003) Molecular mechanisms of curcumin-induced cytotoxicity: induction of apoptosis through generation of reactive oxygen species, down-regulation of Bcl-XL and IAP, the release of cytochrome c and inhibition of Akt. Carcinogenesis 24:1199–1208

    Article  PubMed  CAS  Google Scholar 

  65. Khar A, Ali AM, Pardhasaradhi BV, Varalakshmi CH, Anjum R, Kumari AL (2001) Induction of stress response renders human tumor cell lines resistant to curcumin-mediated apoptosis: role of reactive oxygen intermediates. Cell Stress Chaperones 6:368–376

    Article  PubMed  CAS  Google Scholar 

  66. Dutta S, Padhye S, Priyadarsini KI, Newton C (2005) Antioxidant and antiproliferative activity of curcumin semicarbazone. Bioorg Med Chem Lett 15:2738–2744

    Article  PubMed  CAS  Google Scholar 

  67. Galati G, Sabzevari O, Wilson JX, O’Brien PJ (2002) Prooxidant activity and cellular effects of the phenoxyl radicals of dietary flavonoids and other polyphenolics. Toxicology 177:91–104

    Article  PubMed  CAS  Google Scholar 

  68. Kawanishi S, Oikawa S, Murata M (2005) Evaluation for safety of antioxidant chemopreventive agents. Antioxid Redox Signal 7:1728–1739

    Article  PubMed  CAS  Google Scholar 

  69. Strasser EM, Wessner B, Manhart N, Roth E (2005) The relationship between the anti-inflammatory effects of curcumin and cellular glutathione content in myelomonocytic cells. Biochem Pharmacol 70:552–559

    Article  PubMed  CAS  Google Scholar 

  70. Choudhuri T, Pal S, Das T, Sa G (2005) Curcumin selectively induces apoptosis in deregulated cyclin D1-expressed cells at G2 phase of cell cycle in a p53-dependent manner. J Biol Chem 280:20059–20068

    Article  PubMed  CAS  Google Scholar 

  71. Everett PC, Meyers JA, Makkinje A, Rabbi M, Lerner A (2007) Preclinical assessment of curcumin as a potential therapy for B-CLL. Am J Hematol 82:23–30

    Article  PubMed  CAS  Google Scholar 

  72. Jiang MC, Yang-Yen HF, Yen JJ, Lin JK (1996) Curcumin induces apoptosis in immortalized NIH 3T3 and malignant cancer cell lines. Nutr Cancer 26:111–120

    Article  PubMed  CAS  Google Scholar 

  73. Ramachandran C, You W (1999) Differential sensitivity of human mammary epithelial and breast carcinoma cell lines to curcumin. Breast Cancer Res Treat 54:269–278

    Article  PubMed  CAS  Google Scholar 

  74. Toyokuni S, Okamoto K, Yodoi J, Hiai H (1995) Persistent oxidative stress in cancer. FEBS Lett 358:1–3

    Article  PubMed  CAS  Google Scholar 

  75. Szatrowski TP, Nathan CF (1991) Production of large amounts of hydrogen peroxide by human tumor cells. Cancer Res 51:794–798

    PubMed  CAS  Google Scholar 

  76. Pelicano H, Carney D, Huang P (2004) ROS stress in cancer cells and therapeutic implications. Drug Resist Updat 7:97–110

    Article  PubMed  CAS  Google Scholar 

  77. Renschler MF (2004) The emerging role of reactive oxygen species in cancer therapy. Eur J Cancer 40:1934–1940

    Article  PubMed  CAS  Google Scholar 

  78. Bava SV, Puliappadamba VT, Deepti A, Nair A, Karunagaran D, Anto RJ (2005) Sensitization of taxol-induced apoptosis by curcumin involves down-regulation of nuclear factor-kappaB and the serine/threonine kinase Akt and is independent of tubulin polymerization. J Biol Chem 280:6301–6308

    Article  PubMed  CAS  Google Scholar 

  79. Javvadi P, Segan AT, Tuttle SW, Koumenis C (2008) The chemopreventive agent curcumin is a potent radiosensitizer of human cervical tumor cells via increased reactive oxygen species production and overactivation of the mitogen-activated protein kinase pathway. Mol Pharmacol 73:1491–1501

    Article  PubMed  CAS  Google Scholar 

  80. Chendil D, Ranga RS, Meigooni D, Sathishkumar S, Ahmed MM (2004) Curcumin confers radiosensitizing effect in prostate cancer cell line PC-3. Oncogene 23:1599–1607

    Article  PubMed  CAS  Google Scholar 

  81. Li M, Zhang Z, Hill DL, Wang H, Zhang R (2007) Curcumin, a dietary component, has anticancer, chemosensitization, and radiosensitization effects by down-regulating the MDM2 oncogene through the PI3K/mTOR/ETS2 pathway. Cancer Res 67:1988–1996

    Article  PubMed  CAS  Google Scholar 

  82. Khafif A, Hurst R, Kyker K, Fliss DM, Gil Z, Medina JE (2005) Curcumin: a new radio-sensitizer of squamous cell carcinoma cells. Otolaryngol Head Neck Surg 132:317–321

    Article  PubMed  Google Scholar 

  83. Park K, Lee JH (2007) Photosensitizer effect of curcumin on UVB-irradiated HaCaT cells through activation of caspase pathways. Oncol Rep 17:537–540

    PubMed  CAS  Google Scholar 

  84. Kamat AM, Sethi G, Aggarwal BB (2007) Curcumin potentiates the apoptotic effects of chemotherapeutic agents and cytokines through down-regulation of nuclear factor-kappaB and nuclear factor-kappaB-regulated gene products in IFN-alpha-sensitive and IFN-alpha-resistant human bladder cancer cells. Mol Cancer Ther 6:1022–1030

    Article  PubMed  CAS  Google Scholar 

  85. Du B, Jiang L, Xia Q, Zhong L (2006) Synergistic inhibitory effects of curcumin and 5-fluorouracil on the growth of the human colon cancer cell line HT-29. Chemotherapy 52:23–28

    Article  PubMed  CAS  Google Scholar 

  86. Hour T, Chen J, Huang CY, Guan JY, Lu SH, Pu YS (2002) Curcumin enhances cytotoxicity of chemotherapeutic agents in prostate cancer cells by inducing p21 (WAF1/CIP1) and C/EBPbeta expressions and suppressing NF-kappaB activation. Prostate 51:211–218

    Article  PubMed  CAS  Google Scholar 

  87. Koo JY, Kim HJ, Jung KO, Park KY (2004) Curcumin inhibits the growth of AGS human gastric carcinoma cells in vitro and shows synergism with 5-fluorouracil. J Med Food 7:117–121

    Article  PubMed  CAS  Google Scholar 

  88. Garg A, Cuchholz TA, Aggarwal BB (2005) Chemosensitization and radiosensitization of tumors by plant polyphenols. Antioxid Redox Signal 7:1630–1647

    Article  PubMed  CAS  Google Scholar 

  89. Sen S, Sharma H, Singh N (2005) Curcumin enhances Vinorelbine mediated apoptosis in NSCLC cells by the mitochondrial pathway. Biochem Biophys Res Commun 331:1245–1252

    Article  PubMed  CAS  Google Scholar 

  90. Kunnumakkara AB, Guha S, Krishnan S, Diagaradjane P, Gelovani J, Aggarwal BB (2007) Curcumin potentiates antitumor activity of gemcitabine in an orthotopic model of pancreatic cancer through suppression of proliferation, angiogenesis, and inhibition of nuclear factor-kappaB-regulated gene products. Cancer Res 67:3853–3861

    Article  PubMed  CAS  Google Scholar 

  91. Deeb D, Jiang H, Gao X, Divine G, Dulchavasky SA, Gautam SC (2005) Chemosensitization of hormone-refractory prostate cancer cells by curcumin to TRAIL-induced apoptosis. J Exp Ther Oncol 5:81–91

    PubMed  CAS  Google Scholar 

  92. van’t Land B, Blijlevens NM, Marteijn J, Timal S, Donnelly JP, de Witte TJ, M’Rabet L (2004) Role of curcumin and the inhibition of NF-kappaB in the onset of chemotherapy-induced mucosal barrier injury. Leukemia 18:276–284

    Article  PubMed  CAS  Google Scholar 

  93. Abraham S, Sarma L, Kesavan PC (1993) Protective effects of chlorogenic acid, curcumin and beta-carotene against gamma-radiation-induced in vivo chromosomal damage. Mutat Res 303:109–112

    Article  PubMed  CAS  Google Scholar 

  94. Chan WH, Wu CC, Yu JS (2003) Curcumin inhibits UV irradiation-induced oxidative stress and apoptotic biochemical changes in human epidermoid carcinoma A431 cells. J Cell Biochem 90:327–338

    Article  PubMed  CAS  Google Scholar 

  95. Inano H, Makoto O, Inafuku N, Kubota M, Kamada Y, Osawa T, Kobayashi H, Wakabayashi K (2000) Potent preventive action of curcumin on radiation-induced initiation of mammary tumorigenesis in rats. Carcinogenesis 21:1835–1841

    Article  PubMed  CAS  Google Scholar 

  96. Inano H, Makoto O, Inafuku N, Kubota M, Kamada Y, Osawa T, Kobayashi H, Wakabayashi K (1999) Chemoprevention by curcumin during the promotion stage of tumorigenesis of mammary glank in rats irradiated with g-rays. Carcinogenesis 20:1011–1018

    Article  PubMed  CAS  Google Scholar 

  97. Okunieff P et al (2006) Curcumin protects against radiation-induced acute and chronic cutaneous toxicity in mice and decreases mRNA expression of inflammatory and fibrogenic cytokines. Int J Radiat Oncol Biol Phys 65:890–898

    Article  PubMed  CAS  Google Scholar 

  98. Srinivasan M, Rajendra Prasad N, Menon VP (2006) Protective effect of curcumin on gamma-radiation induced DNA damage and lipid peroxidation in cultured human lymphocytes. Mutat Res 611:96–103

    Article  PubMed  CAS  Google Scholar 

  99. Somasundaram S, Edmund NA, Moore DT, Small GW, Shi YY, Orlowski RZ (2002) Dietary curcumin inhibits chemotherapy-induced apoptosis in models of human breast cancer. Cancer Res 62:3868–3875

    PubMed  CAS  Google Scholar 

  100. Antunes LM, Araujo MC, Darin JD, Bianchi ML (2000) Effects of the antioxidants curcumin and vitamin C on cisplatin-induced clastogenesis in Wistar rat bone marrow cells. Mutat Res 465:131–137

    Article  PubMed  CAS  Google Scholar 

  101. Shishodia S, Sethi G, Aggarwal BB (2005) Curcumin: getting back to the roots. Ann NY Acad Sci 1056:206–217

    Article  PubMed  CAS  Google Scholar 

  102. van Kempen LC, de Visser KE, Coussens LM (2006) Inflammation, proteases and cancer. Eur J Cancer 42:728–734

    Article  PubMed  CAS  Google Scholar 

  103. Gloire G, Legrand-Poels S, Piette J (2006) NF-kappaB activation by reactive oxygen species: fifteen years later. Biochem Pharmacol 72:1493–1505

    Article  PubMed  CAS  Google Scholar 

  104. Wenk J, Brenneisen P, Wlaschek M, Poswig A, Briviba K, Oberley TD, Scharffetter-Kochanek K (1999) Stable overexpression of manganese superoxide dismutase in mitochondria identifies hydrogen peroxide as a major oxidant in the AP-1-mediated induction of matrix-degrading metalloprotease-1. J Biol Chem 274:25869–25876

    Article  PubMed  CAS  Google Scholar 

  105. Nelson KK et al (2003) Elevated sod2 activity augments matrix metalloproteinase expression: evidence for the involvement of endogenous hydrogen peroxide in regulating metastasis. Clin Cancer Res 9:424–432

    PubMed  CAS  Google Scholar 

  106. Haddad JJ, Land SC (2001) A non-hypoxic, ROS-sensitive pathway mediates TNF-alpha-dependent regulation of HIF-1alpha. FEBS Lett 505:269–274

    Article  PubMed  CAS  Google Scholar 

  107. Huang C, Li J, Ding M, Leonard SS, Wang L, Castranova V, Vallyathan V, Shi X (2001) UV Induces phosphorylation of protein kinase B (Akt) at Ser-473 and Thr-308 in mouse epidermal Cl 41 cells through hydrogen peroxide. J Biol Chem 276:40234–40240

    PubMed  CAS  Google Scholar 

  108. Qin S, Chock PB (2003) Implication of phosphatidylinositol 3-kinase membrane recruitment in hydrogen peroxide-induced activation of PI3K and Akt. Biochemistry 42:2995–3003

    Article  PubMed  CAS  Google Scholar 

  109. Chen K, Vita JA, Berk BC, Keaney JF Jr (2001) c-Jun N-terminal kinase activation by hydrogen peroxide in endothelial cells involves SRC-dependent epidermal growth factor receptor transactivation. J Biol Chem 276:16045–16050

    Article  PubMed  CAS  Google Scholar 

  110. Joseph P, Muchnok TK, Klishis ML, Roberts JR, Antonini JM, Whong WZ, Ong T (2001) Cadmium-induced cell transformation and tumorigenesis are associated with transcriptional activation of c-fos, c-jun, and c-myc proto-oncogenes: role of cellular calcium and reactive oxygen species. Toxicol Sci 61:295–303

    Article  PubMed  CAS  Google Scholar 

  111. Li DW, Spector A (1997) Hydrogen peroxide-induced expression of the proto-oncogenes, c-jun, c-fos and c-myc in rabbit lens epithelial cells. Mol Cell Biochem 173:59–69

    Article  PubMed  CAS  Google Scholar 

  112. Maki A, Berezesky IK, Fargnoli J, Holbrook NJ, Trump BF (1992) Role of [Ca2+]i in induction of c-fos, c-jun, and c-myc mRNA in rat PTE after oxidative stress. FASEB J 6:919–924

    PubMed  CAS  Google Scholar 

  113. Rao GN (1996) Hydrogen peroxide induces complex formation of SHC-Grb2-SOS with receptor tyrosine kinase and activates Ras and extracellular signal-regulated protein kinases group of mitogen-activated protein kinases. Oncogene 13:713–719

    PubMed  CAS  Google Scholar 

  114. Suzaki Y et al (2002) Hydrogen peroxide stimulates c-Src-mediated big mitogen-activated protein kinase 1 (BMK1) and the MEF2C signaling pathway in PC12 cells: potential role in cell survival following oxidative insults. J Biol Chem 277:9614–9621

    Article  PubMed  CAS  Google Scholar 

  115. Cao Q, Mak KM, Ren C, Lieber CS (2004) Leptin stimulates tissue inhibitor of metalloproteinase-1 in human hepatic stellate cells: respective roles of the JAK/STAT and JAK-mediated H2O2-dependant MAPK pathways. J Biol Chem 279:4292–4304

    Article  PubMed  CAS  Google Scholar 

  116. Simon AR, Rai U, Fanburg BL, Cochran BH (1998) Activation of the JAK-STAT pathway by reactive oxygen species. Am J Physiol 275:C1640–C1652

    PubMed  CAS  Google Scholar 

  117. Lin JK (2007) Molecular targets of curcumin. Adv Exp Med Biol 595:227–243

    Article  PubMed  Google Scholar 

  118. Surh YJ (2003) Cancer chemoprevention with dietary phytochemicals. Nat Rev Cancer 3:768–780

    Article  PubMed  CAS  Google Scholar 

  119. Shishodia S, Amin HM, Lai R, Aggarwal BB (2005) Curcumin (diferuloylmethane) inhibits constitutive NF-kappaB activation, induces G1/S arrest, suppresses proliferation, and induces apoptosis in mantle cell lymphoma. Biochem Pharmacol 70:700–713

    Article  PubMed  CAS  Google Scholar 

  120. Amit S, Ben-Neriah Y (2003) NF-kappaB activation in cancer: a challenge for ubiquitination- and proteasome-based therapeutic approach. Semin Cancer Biol 13:15–28

    Article  PubMed  CAS  Google Scholar 

  121. Baeuerle P, Henkel T (1994) Function and activation of NF-kappa B in the immune system. Annu Rev Immunol 12:141–179

    Article  PubMed  CAS  Google Scholar 

  122. Barnes P, Karin M (1997) Nuclear factor-B – a pivotal transcription factor in chronic inflammatory diseases. N Engl J Med 336:1066–1071

    Article  PubMed  CAS  Google Scholar 

  123. Siebenlist U, Franzoso G, Brown K (1994) Structure, regulation and function of NF-kappa B. Annu Rev Cell Biol 10:405–455

    Article  PubMed  CAS  Google Scholar 

  124. Jobin C, Bradham CA, Russo MP, Juma B, Narula AS, Brenner DA, Sartor RB (1999) Curcumin blocks cytokine-mediated NF-kappa B activation and proinflammatory gene expression by inhibiting inhibitory factor I-kappa B kinase activity. J Immunol 163:3474–3483

    PubMed  CAS  Google Scholar 

  125. Plummer SM, Holloway KA, Manson MM, Munks RJ, Kaptein A, Farrow S, Howells L (1999) Inhibition of cyclo-oxygenase 2 expression in colon cells by the chemopreventive agent curcumin involves inhibition of NF-kappaB activation via the NIK/IKK signalling complex. Oncogene 18:6013–6020

    Article  PubMed  CAS  Google Scholar 

  126. Singh S, Aggarwal BB (1995) Activation of transcription factor NF-kB is suppressed by curcumin (diferulolylmethane). J Biol Chem 270:24995–25000

    Article  PubMed  CAS  Google Scholar 

  127. Singh M, Singh N (2009) Molecular mechanism of curcumin induced cytotoxicity in human cervical carcinoma cells. Mol Cell Biochem 325:107–119

    Article  PubMed  CAS  Google Scholar 

  128. Han S-S, Keum Y-S, Seo H-J, Surh Y-J (2002) Curcumin suppresses activation of NF-κB and AP-1 induced by phorbol ester in cultured human promyelocytic leukemia cells. J Biochem Molec Biol 35:337–342

    Article  CAS  Google Scholar 

  129. Aggarwal S, Ichikawa H, Takada Y, Sandur SK, Shishodia S, Aggarwal BB (2006) Curcumin (diferuloylmethane) down-regulates expression of cell proliferation and antiapoptotic and metastatic gene products through suppression of IkappaBalpha kinase and Akt activation. Mol Pharmacol 69:195–206

    PubMed  CAS  Google Scholar 

  130. Cohen AN, Veena MS, Srivatsan ES, Wang MB (2009) Suppression of interleukin 6 and 8 production in head and neck cancer cells with curcumin via inhibition of Ikappa beta kinase. Arch Otolaryngol Head Neck Surg 135:190–197

    Article  PubMed  Google Scholar 

  131. LoTempio MM et al (2005) Curcumin suppresses growth of head and neck squamous cell carcinoma. Clin Cancer Res 11:6994–7002

    Article  PubMed  CAS  Google Scholar 

  132. Li L, Aggarwal BB, Shishodia S, Abbruzzese J, Kurzrock R (2004) Nuclear factor-kappaB and IkappaB kinase are constitutively active in human pancreatic cells, and their down-regulation by curcumin (diferuloylmethane) is associated with the suppression of proliferation and the induction of apoptosis. Cancer 101:2351–2362

    Article  PubMed  CAS  Google Scholar 

  133. Siwak DR, Shishodia S, Aggarwal BB, Kurzrock R (2005) Curcumin-induced antiproliferative and proapoptotic effects in melanoma cells are associated with suppression of IkappaB kinase and nuclear factor kappaB activity and are independent of the B-Raf/mitogen-activated/extracellular signal-regulated protein kinase pathway and the Akt pathway. Cancer 104:879–890

    Article  PubMed  CAS  Google Scholar 

  134. Beevers CS, Li F, Liu L, Huang S (2006) Curcumin inhibits the mammalian target of rapamycin-mediated signaling pathways in cancer cells. Int J Cancer 119:757–764

    Article  PubMed  CAS  Google Scholar 

  135. Zhang H, Bajraszewski N, Wu E, Wang H, Moseman AP, Dabora SL, Griffin JD, Kwiatkowski DJ (2007) PDGFRs are critical for PI3K/Akt activation and negatively regulated by mTOR. J Clin Invest 117:730–738

    Article  PubMed  CAS  Google Scholar 

  136. Aoki H, Takada Y, Kondo S, Sawaya R, Aggarwal BB, Kondo Y (2007) Evidence that curcumin suppresses the growth of malignant gliomas in vitro and in vivo through induction of autophagy: role of Akt and extracellular signal-regulated kinase signaling pathways. Mol Pharmacol 72:29–39

    Article  PubMed  CAS  Google Scholar 

  137. Shinojima N, Yokoyama T, Kondo Y, Kondo S (2007) Roles of the Akt/mTOR/p70S6K and ERK1/2 signaling pathways in curcumin-induced autophagy. Autophagy 3:635–637

    PubMed  CAS  Google Scholar 

  138. Hennessy BT, Smith DL, Ram PT, Lu Y, Mills GB (2005) Exploiting the PI3K/AKT pathway for cancer drug discovery. Nat Rev Drug Discov 4:988–1004

    Article  PubMed  CAS  Google Scholar 

  139. Yu S, Shen G, Khor TO, Kim JH, Kong AN (2008) Curcumin inhibits Akt/mammalian target of rapamycin signaling through protein phosphatase-dependent mechanism. Mol Cancer Ther 7:2609–2620

    Article  PubMed  CAS  Google Scholar 

  140. Farombi EO, Shrotriya S, Na HK, Kim SH, Surh YJ (2008) Curcumin attenuates dimethylnitrosamine-induced liver injury in rats through Nrf2-mediated induction of heme oxygenase-1. Food Chem Toxicol 46:1279–1287

    Article  PubMed  CAS  Google Scholar 

  141. Jeong WS, Jun M, Kong AN (2006) Nrf2: a potential molecular target for cancer chemoprevention by natural compounds. Antioxid Redox Signal 8:99–106

    Article  PubMed  CAS  Google Scholar 

  142. Lee JS, Surh YJ (2005) Nrf2 as a novel molecular target for chemoprevention. Cancer Lett 224:171–184

    Article  PubMed  CAS  Google Scholar 

  143. Scapagnini G, Foresti R, Calabrese V, Giuffrida Stella AM, Green CJ, Motterlini R (2002) Caffeic acid phenethyl ester and curcumin: a novel class of heme oxygenase-1 inducers. Mol Pharmacol 61:554–561

    Article  PubMed  CAS  Google Scholar 

  144. Garg R, Gupta S, Maru GB (2008) Dietary curcumin modulates transcriptional regulators of phase I and phase II enzymes in benzo[a]pyrene-treated mice: mechanism of its anti-initiating action. Carcinogenesis 29:1022–1032

    Article  PubMed  CAS  Google Scholar 

  145. Prestera T, Talalay P (1995) Electrophile and antioxidant regulation of enzymes that detoxify carcinogens. Proc Natl Acad Sci USA 92:8965–8969

    Article  PubMed  CAS  Google Scholar 

  146. Ciolino HP, Daschner PJ, Wang TT, Yeh GC (1998) Effect of curcumin on the aryl hydrocarbon receptor and cytochrome P450 1A1 in MCF-7 human breast carcinoma cells. Biochem Pharmacol 56:197–206

    Article  PubMed  CAS  Google Scholar 

  147. Singh S, Hu X, Srivastava SK, Singh M, Xia H, Orchard JL, Zaren HA (1998) Mechanism of inhibition of benzo[a]pyrene-induced forestomach cancer in mice by dietary curcumin. Carcinogenesis 19:1357–1360

    Article  PubMed  CAS  Google Scholar 

  148. Dinkova-Kostova AT, Talalay P (1999) Relation of structure of curcumin analogs to their potencies as inducers of phase 2 detoxification enzymes. Carcinogenesis 20:911–914

    Article  PubMed  CAS  Google Scholar 

  149. Bernabe-Pineda M, Ramirez-Silva MT, Romero-Romo MA, Gonzalez-Vergara E, Rojas-Hernandez A (2004) Spectrophotometric and electrochemical determination of the formation constants of the complexes Curcumin-Fe(III)-water and Curcumin-Fe(II)-water. Spectrochim Acta A Mol Biomol Spectrosc 60:1105–1113

    Article  PubMed  CAS  Google Scholar 

  150. Reddy A, Lokesh BR (1994) Studies on the inhibitory effects of curcumin and eugenol on the formation of reactive oxygen species and the oxidation of ferrous iron. Mol Cell Biochem 137:1–8

    Article  PubMed  CAS  Google Scholar 

  151. Antunes LMG, Araújo MCP, da Luz DF, Takahashi CS (2005) Effects of H2O2, Fe2+ and Fe3+ on curcumin-induced chromosomal aberrations in CHO cells. Genet Mol Biol 28:161–164

    Article  CAS  Google Scholar 

  152. Jiao Y, Wilkinson J 4th, Pietsch EC, Buss JL, Wang W, Planalp R, Torti FM, Torti SV (2006) Iron chelation in the biological activity of curcumin. Free Radic Biol Med 40:1152–1160

    Article  PubMed  CAS  Google Scholar 

  153. Jiao Y et al (2009) Curcumin, a cancer chemopreventive and chemotherapeutic agent, is a biologically active iron chelator. Blood 113:462–469

    Article  PubMed  CAS  Google Scholar 

  154. Messner DJ, Sivam G, Kowdley KV (2009) Curcumin reduces the toxic effects of iron loading in rat liver epithelial cells. Liver Int 29:63–72

    Article  PubMed  CAS  Google Scholar 

  155. Thephinlap C, Phisalaphong C, Fucharoen S, Porter JB, Srichairatanakool S (2009) Efficacy of curcuminoids in alleviation of iron overload and lipid peroxidation in thalassemic mice. Med Chem 5:474–482

    Article  PubMed  CAS  Google Scholar 

  156. Shankar T, Shantha NV, Ramesh HP, Murthy IA, Murthy VS (1980) Toxicity studies on turmeric (Curcuma longa): acute toxicity studies in rats, guineapigs and monkeys. Indian J Exp Biol 18:73–75

    PubMed  CAS  Google Scholar 

  157. Soni K, Kuttan R (1992) Effect of oral curcumin administration on serum peroxides and cholesterol levels in human volunteers. Indian J Physiol Pharmacol 36:273–275

    PubMed  CAS  Google Scholar 

  158. Cheng AL et al (2001) Phase I clinical trial of curcumin, a chemopreventive agent, in patients with high-risk or pre-malignant lesions. Anticancer Res 21:2895–2900

    PubMed  CAS  Google Scholar 

  159. Sharma RA et al (2004) Phase I clinical trial of oral curcumin: biomarkers of systemic activity and compliance. Clin Cancer Res 10:6847–6854

    Article  PubMed  CAS  Google Scholar 

  160. Sharma RA et al (2001) Pharmacodynamic and pharmacokinetic study of oral Curcuma extract in patients with colorectal cancer. Clin Cancer Res 7:1894–1900

    PubMed  CAS  Google Scholar 

  161. Dhillon N et al (2008) Phase II trial of curcumin in patients with advanced pancreatic cancer. Clin Cancer Res 14:4491–4499

    Article  PubMed  CAS  Google Scholar 

  162. Li L, Braiteh FS, Kurzrock R (2005) Liposome-encapsulated curcumin: in vitro and in vivo effects on proliferation, apoptosis, signaling, and angiogenesis. Cancer 104:1322–1331

    Article  PubMed  CAS  Google Scholar 

  163. Bharti A, Donato N, Aggarwal BB (2003) Curcumin (diferuloylmethane) inhibits constitutive and IL-6-inducible STAT3 phosphorylation in human multiple myeloma cells. J Immunol 171:3863–3871

    PubMed  CAS  Google Scholar 

  164. Dance-Barnes ST et al (2009) Lung tumor promotion by curcumin. Carcinogenesis 30:1016–1023

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Supported in part by grants R37 DK42412 (FMT) and R01DK071892 (SVT).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suzy V. Torti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Hatcher, H.C., Torti, F.M., Torti, S.V. (2012). Curcumin, Oxidative Stress, and Cancer Therapy. In: Spitz, D., Dornfeld, K., Krishnan, K., Gius, D. (eds) Oxidative Stress in Cancer Biology and Therapy. Oxidative Stress in Applied Basic Research and Clinical Practice. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-61779-397-4_12

Download citation

Publish with us

Policies and ethics

Navigation

-