Skip to main content
Log in

A preliminary investigation of the impact of catechol-O-methyltransferase genotype on the absorption and metabolism of green tea catechins

  • Original Contribution
  • Published:
European Journal of Nutrition Aims and scope Submit manuscript

Abstract

Purpose

Green tea is thought to possess many beneficial effects on human health. However, the extent of green tea polyphenol biotransformation may affect its proposed therapeutic effects. Catechol-O-methyltransferase (COMT), the enzyme responsible for polyphenolic methylation, has a common polymorphism in the genetic code at position 158 reported to result in a 40% reduction in enzyme activity in in vitro studies. The current preliminary study was designed to investigate the impact of COMT genotype on green tea catechin absorption and metabolism in humans.

Methods

Twenty participants (10 of each homozygous COMT genotype) were recruited, and plasma concentration profiles were produced for epigallocatechin gallate (EGCG), epigallocatechin (EGC), epicatechin gallate (ECG), epicatechin (EC) and 4′-O-methyl EGCG after 1.1 g of Sunphenon decaffeinated green tea extract (836 mg green tea catechins), with a meal given after 60 min.

Results

For the entire group, EGCG, EGC, EC, ECG and 4′-O-methyl EGCG reached maximum concentrations of 1.09, 0.41, 0.33, 0.16 and 0.08 μM at 81.5, 98.5, 99.0, 85.5 and 96.5 min, respectively. Bimodal curves were observed for the non-gallated green tea catechins EGC and EC as opposed to single-peaked curves for the gallated green tea catechins EGCG and ECG. No significant parametric differences between COMT genotype groups were found.

Conclusions

In conclusion, the COMT Val(158/108)Met does not appear to have a dramatic influence on EGCG absorption and elimination. However, further pharmacokinetic research is needed to substantiate these findings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Nakachi K, Matsuyama S, Miyake S, Suganuma M, Imai K (2000) Preventive effects of drinking green tea on cancer and cardiovascular disease: epidemiological evidence for multiple targeting prevention. Biofactors 13:49–54

    Article  CAS  Google Scholar 

  2. Kuroda Y, Hara Y (1999) Antimutagenic and anticarcinogenic activity of tea polyphenols. Mutat Res 436:69–97

    Article  CAS  Google Scholar 

  3. Clark J, You M (2006) Chemoprevention of lung cancer by tea. Mol Nutr Food Res 50:144–151

    Article  CAS  Google Scholar 

  4. Anderson RA, Polansky MM (2002) Tea enhances insulin activity. J Agric Food Chem 50:7182–7186

    Article  CAS  Google Scholar 

  5. Tsuneki H, Ishizuka M, Terasawa M, Wu JB, Sasaoka T, Kimura I (2004) Effect of green tea on blood glucose levels and serum proteomic patterns in diabetic (db/db) mice and on glucose metabolism in healthy humans. BMC Pharmacol 4:18

    Article  Google Scholar 

  6. Wolfram S, Raederstorff D, Preller M, Wang Y, Teixeira SR, Riegger C, Weber P (2006) Epigallocatechin gallate supplementation alleviates diabetes in rodents. J Nutr 136:2512–2518

    CAS  Google Scholar 

  7. Kavantzas N, Chatziioannou A, Yanni AE, Tsakayannis D, Balafoutas D, Agrogiannis G, Perrea D (2006) Effect of green tea on angiogenesis and severity of atherosclerosis in cholesterol-fed rabbit. Vascul Pharmacol 44:461–463

    Article  CAS  Google Scholar 

  8. Sasazuki S, Kodama H, Yoshimasu K, Liu Y, Washio M, Tanaka K, Tokunaga S, Kono S, Arai H, Doi Y, Kawano T, Nakagaki O, Takada K, Koyanagi S, Hiyamuta K, Nii T, Shirai K, Ideishi M, Arakawa K, Mohri M, Takeshita A (2000) Relation between green tea consumption and the severity of coronary atherosclerosis among Japanese men and women. Ann Epidemiol 10:401–408

    Article  CAS  Google Scholar 

  9. Unno T, Tago M, Suzuki Y, Nozawa A, Sagesaka YM, Kakuda T, Egawa K, Kondo K (2005) Effect of tea catechins on postprandial plasma lipid responses in human subjects. Br J Nutr 93:543–547

    Article  CAS  Google Scholar 

  10. Anandh Babu PV, Sabitha KE, Shyamaladevi CS (2006) Green tea extract impedes dyslipidaemia and development of cardiac dysfunction in streptozotocin-diabetic rats. Clin Exp Pharmacol Physiol 33:1184–1189

    Article  CAS  Google Scholar 

  11. Tedeschi E, Suzuki H, Menegazzi M (2002) Antiinflammatory action of EGCG, the main component of green tea, through STAT-1 inhibition. Ann N Y Acad Sci 973:435–437

    Article  CAS  Google Scholar 

  12. Lin JK, Lin-Shiau SY (2006) Mechanisms of hypolipidemic and anti-obesity effects of tea and tea polyphenols. Mol Nutr Food Res 50:211–217

    Article  CAS  Google Scholar 

  13. Tachibana H (2009) Molecular basis for cancer chemoprevention by green tea polyphenol EGCG. Forum Nutr 61:156–169

    Article  CAS  Google Scholar 

  14. Tipoe GL, Leung TM, Hung MW, Fung ML (2007) Green tea polyphenols as an anti-oxidant and anti-inflammatory agent for cardiovascular protection. Cardiovasc Hematol Disord Drug Targets 7:135–144

    CAS  Google Scholar 

  15. Wolfram S, Wang Y, Thielecke F (2006) Anti-obesity effects of green tea: from bedside to bench. Mol Nutr Food Res 50:176–187

    Article  CAS  Google Scholar 

  16. Ju J, Lu G, Lambert JD, Yang CS (2007) Inhibition of carcinogenesis by tea constituents. Semin Cancer Biol 17:395–402

    Article  CAS  Google Scholar 

  17. Lu H, Meng XF, Yang CS (2003) Enzymology of methylation of tea catechins and inhibition of catechol-O-methyltransferase by (−)-epigallocatechin gallate. Drug Metab Dispos 31:572–579

    Article  CAS  Google Scholar 

  18. Moore RJ, Jackson KG, Minihane AM (2009) Green tea (Camellia sinensis) catechins and vascular function. Br J Nutr 102:1790–1802

    Article  CAS  Google Scholar 

  19. Huo C, Yang H, Cui QC, Dou QP, Chan TH (2010) Proteasome inhibition in human breast cancer cells with high catechol-O-methyltransferase activity by green tea polyphenol EGCG analogs. Bioorg Med Chem 18:1252–1258

    Article  CAS  Google Scholar 

  20. Dou QP (2009) Molecular mechanisms of green tea polyphenols. Nutr Cancer 61:827–835

    Article  CAS  Google Scholar 

  21. Harada M, Kan Y, Naoki H, Fukui Y, Kageyama N, Nakai M, Miki W, Kiso Y (1999) Identification of the major antioxidative metabolites in biological fluids of the rat with ingested (+)-catechin and (−)-epicatechin. Biosci Biotechnol Biochem 63:973–977

    Article  CAS  Google Scholar 

  22. Landis-Piwowar KR, Milacic V, Dou QP (2008) Relationship between the methylation status of dietary flavonoids and their growth-inhibitory and apoptosis-inducing activities in human cancer cells. J Cell Biochem 105:514–523

    Article  CAS  Google Scholar 

  23. Yano S, Fujimura Y, Umeda D, Miyase T, Yamada K, Tachibana H (2007) Relationship between the biological activities of methylated derivatives of (−)-epigallocatechin-3-O-gallate (EGCG) and their cell surface binding activities. J Agric Food Chem 55:7144–7148

    Article  CAS  Google Scholar 

  24. Duenas M, Gonzalez-Manzano S, Gonzalez-Paramas A, Santos-Buelga C (2010) Antioxidant evaluation of O-methylated metabolites of catechin, epicatechin and quercetin. J Pharm Biomed Anal 51:443–449

    Article  CAS  Google Scholar 

  25. Koga T, Meydani M (2001) Effect of plasma metabolites of (+)-catechin and quercetin on monocyte adhesion to human aortic endothelial cells. Am J Clin Nutr 73:941–948

    CAS  Google Scholar 

  26. Lu H, Meng XF, Li C, Sang SM, Patten C, Sheng SQ, Hong JG, Bai NS, Winnik B, Ho CT, Yang CS (2003) Glucuronides of tea catechins: enzymology of biosynthesis and biological activities. Drug Metab Dispos 31:452–461

    Article  CAS  Google Scholar 

  27. Lambert JD, Rice JE, Hong J, Hou Z, Yang CS (2005) Synthesis and biological activity of the tea catechin metabolites, M4 and M6 and their methoxy-derivatives. Bioorg Med Chem Lett 15:873–876

    Article  CAS  Google Scholar 

  28. Nanjo F, Mori M, Goto K, Hara Y (1999) Radical scavenging activity of tea catechins and their related compounds. Biosci Biotechnol Biochem 63:1621–1623

    Article  CAS  Google Scholar 

  29. Sano M, Suzuki M, Miyase T, Yoshino K, Maeda-Yamamoto M (1999) Novel antiallergic catechin derivatives isolated from oolong tea. J Agric Food Chem 47:1906–1910

    Article  CAS  Google Scholar 

  30. Chiu FL, Lin JK (2005) HPLC analysis of naturally occurring methylated catechins, 3’ ‘- and 4’ ‘-methyl-epigallocatechin gallate, in various fresh tea leaves and commercial teas and their potent inhibitory effects on inducible nitric oxide synthase in macrophages. J Agric Food Chem 53:7035–7042

    Article  CAS  Google Scholar 

  31. Chen J, Lipska BK, Halim N, Ma QD, Matsumoto M, Melhem S, Kolachana BS, Hyde TM, Herman MM, Apud J, Egan MF, Kleinman JE, Weinberger DR (2004) Functional analysis of genetic variation in catechol-O-methyltransferase (COMT): effects on mRNA, protein, and enzyme activity in postmortem human brain. Am J Hum Genet 75:807–821

    Article  CAS  Google Scholar 

  32. Shield AJ, Thomae BA, Eckloff BW, Wieben ED, Weinshilboum RM (2004) Human catechol O-methyltransferase genetic variation: gene resequencing and functional characterization of variant allozymes. Mol Psychiatry 9:151–160

    Article  CAS  Google Scholar 

  33. Boudikova B, Szumlanski C, Maidak B, Weinshilboum R (1990) Human liver catechol-O-methyltransferase pharmacogenetics. Clin Pharmacol Ther 48:381–389

    Article  CAS  Google Scholar 

  34. Wu AH, Tseng CC, Van den Berg D, Yu MC (2003) Tea intake, COMT genotype, and breast cancer in Asian-American women. Cancer Res 63:7526–7529

    CAS  Google Scholar 

  35. Meng X, Sang S, Zhu N, Lu H, Sheng S, Lee MJ, Ho CT, Yang CS (2002) Identification and characterization of methylated and ring-fission metabolites of tea catechins formed in humans, mice, and rats. Chem Res Toxicol 15:1042–1050

    Article  CAS  Google Scholar 

  36. Chow HHS, Hakim IA, Vining DR, Crowel JA, Ranger-Moore J, Chew WM, Celaya CA, Rodney SR, Hara Y, Alberts DS (2005) Effects of dosing condition on the oral bioavailability of green tea catechins after single-dose administration of Polyphenon E in healthy individuals. Clin Cancer Res 11:4627–4633

    Article  CAS  Google Scholar 

  37. Foster DR, Sowinski KM, Chow HH, Overholser BR (2007) Limited sampling strategies to estimate exposure to the green tea polyphenol, epigallocatechin gallate, in fasting and fed conditions. Ther Drug Monit 29:835–842

    Article  CAS  Google Scholar 

  38. Chow HHS, Cai Y, Hakim IA, Crowell JA, Shahi F, Brooks CA, Dorr RT, Hara Y, Alberts DS (2003) Pharmacokinetics and safety of green tea polyphenols after multiple-dose administration of epigallocatechin gallate and Polyphenon E in healthy individuals. Clin Cancer Res 9:3312–3319

    CAS  Google Scholar 

  39. Grun CH, van Dorsten FA, Jacobs DM, Le Belleguic M, van Velzen EJ, Bingham MO, Janssen HG, van Duynhoven JP (2008) GC-MS methods for metabolic profiling of microbial fermentation products of dietary polyphenols in human and in vitro intervention studies. J Chromatogr B Analyt Technol Biomed Life Sci 871:212–219

    Article  Google Scholar 

  40. Ullmann U, Haller J, Decourt JP, Girault N, Girault J, Richard-Caubron AS, Pineau B, Weber P (2003) A single ascending dose study of epigallocatechin gallate in healthy volunteers. J Int Med Res 31:88–101

    CAS  Google Scholar 

  41. Ullmann U, Haller J, Decourt JD, Girault J, Spitzer V, Weber P (2004) Plasma-kinetic characteristics of purified and isolated green tea catechin epigallocatechin gallate (EGCG) after 10 days repeated dosing in healthy volunteers. Int J Vit Nutr Res 74:269–278

    Article  CAS  Google Scholar 

  42. Yang CS, Chen LS, Lee MJ, Balentine D, Kuo MC, Schantz SP (1998) Blood and urine levels of tea catechins after ingestion of different amounts of green tea by human volunteers. Cancer Epidemiol Biomark Prev 7:351–354

    CAS  Google Scholar 

  43. Neilson AP, Sapper TN, Janle EM, Rudolph R, Matusheski NV, Ferruzzi MG (2010) Chocolate matrix factors modulate the pharmacokinetic behavior of cocoa flavan-3-ol phase II metabolites following oral consumption by Sprague-Dawley rats. J Agric Food Chem 58:6685–6691

    Google Scholar 

  44. Scholz S, Williamson G (2007) Interactions affecting the bioavailability of dietary polyphenols in vivo. Int J Vitam Nutr Res 77:224–235

    Article  CAS  Google Scholar 

  45. Henning SM, Choo JJ, Heber D (2008) Nongallated compared with gallated flavan-3-ols in green and black tea are more bioavailable. J Nutr 138:1529S–1534S

    CAS  Google Scholar 

  46. Price VF, Jollow DJ (1989) Effect of glucose and gluconeogenic substrates on fasting-induced suppression of acetaminophen glucuronidation in the rat. Biochem Pharmacol 38:289–297

    Article  CAS  Google Scholar 

  47. Rutherford K, Alphandery E, McMillan A, Daggett V, Parson WW (2008) The V108 M mutation decreases the structural stability of catechol O-methyltransferase. Biochim Biophys Acta 1784:1098–1105

    CAS  Google Scholar 

  48. Barnett JH, Heron J, Goldman D, Jones PB, Xu K (2009) Effects of catechol-O-methyltransferase on normal variation in the cognitive function of children. Am J Psychiatry 166:909–916

    Article  Google Scholar 

  49. Dickinson D, Elvevag B (2009) Genes, cognition and brain through a COMT lens. Neurosci 164:72–87

    Article  CAS  Google Scholar 

  50. Zhang Z, Lindpaintner K, Che R, He Z, Wang P, Yang P, Feng G, He L, Shi Y (2009) The Val/Met functional polymorphism in COMT confers susceptibility to bipolar disorder: evidence from an association study and a meta-analysis. J Neural Transm 116:1193–1200

    Article  CAS  Google Scholar 

  51. Ehrlich S, Morrow EM, Roffman JL, Wallace SR, Naylor M, Bockholt HJ, Lundquist A, Yendiki A, Ho BC, White T, Manoach DS, Clark VP, Calhoun VD, Gollub RL, Holt DJ (2009) The COMT Val108/158Met polymorphism and medial temporal lobe volumetry in patients with schizophrenia and healthy adults. Neuroimage 53:992–1000

    Google Scholar 

  52. Harrison PJ, Weinberger DR (2005) Schizophrenia genes, gene expression, and neuropathology: on the matter of their convergence. Mol Psychiatry 10:40–68; image 45

    Google Scholar 

  53. Bai HW, Shim JY, Yu J, Zhu BT (2007) Biochemical and molecular modeling studies of the O-methylation of various endogenous and exogenous catechol substrates catalyzed by recombinant human soluble and membrane-bound catechol-O-methyltransferases. Chem Res Toxicol 20:1409–1425

    Article  CAS  Google Scholar 

Download references

Conflict of interest

Unilever Discover, Colworth, UK, sponsored the PhD studies of RJM. AMM and KGJ have a number of ongoing collaborative projects with Unilever Discover, Colworth, UK.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rosalind J. Miller.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Miller, R.J., Jackson, K.G., Dadd, T. et al. A preliminary investigation of the impact of catechol-O-methyltransferase genotype on the absorption and metabolism of green tea catechins. Eur J Nutr 51, 47–55 (2012). https://doi.org/10.1007/s00394-011-0189-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00394-011-0189-0

Keywords

Navigation

-