Skip to main content

Advertisement

Log in

Effects of caffeoylquinic acid analogs derived from aerial parts of Artemisia iwayomogi on adipogenesis

  • Research Article
  • Published:
Food Science and Biotechnology Aims and scope Submit manuscript

Abstract

Artemisia iwayomogi (AI) is a perennial herb found in Korea. Its ground parts are dried and used in food and traditional medicine for treating hepatitis, inflammation, cholelithiasis, and jaundice. In this study, the anti-obesity effects of single compounds isolated from AI extracts on adipose tissue were investigated. Results demonstrated that caffeoylquinic acid analogs strongly inhibited adipocyte differentiation from 3T3-L1 preadipocytes and reduced neutral lipids in differentiated adipocytes. Accordingly, lipid accumulation in adipocytes decreased, and lipid droplets became granulated. Caffeoylquinic acid analogs suppressed the expression of adipocyte differentiation marker genes, namely, Cebpa, Lep, and Fabp4, but it induced the expression of Ucp1, Ppargc1a, and Fgf21, which are browning biomarkers. Therefore, caffeoylquinic acid analogs from AI inhibited preadipocyte differentiation and induced adipose tissue browning, suggesting that these compounds could be promising therapeutic agents for obesity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Bae IS, Kim SH. Sinapic Acid Promotes Browning of 3T3-L1 Adipocytes via p38 MAPK/CREB pathway. BioMed Research International. 2020: 5753623 (2020)

    Article  PubMed  PubMed Central  Google Scholar 

  • Bardou M, Barkun AN, Martel M. Obesity and colorectal cancer. Gut. 62: 933-947 (2013)

    Article  CAS  PubMed  Google Scholar 

  • Calderon-Dominguez M, Mir JF, Fucho R, Weber M, Serra D, Herrero L. Fatty acid metabolism and the basis of brown adipose tissue function. Adipocyte. 5: 98-118 (2016)

    Article  CAS  PubMed  Google Scholar 

  • Cho A-S, Jeon S-M, Kim M-J, Yeo J, Seo K-I, Choi M-S, Lee M-K. Chlorogenic acid exhibits anti-obesity property and improves lipid metabolism in high-fat diet-induced-obese mice. Food and Chemical Toxicology. 48: 937-943 (2010)

    Article  CAS  PubMed  Google Scholar 

  • Cho SY, Jeong HW, Sohn JH, Seo D-B, Kim WG, Lee S-J. An ethanol extract of Artemisia iwayomogi activates PPARδ leading to activation of fatty acid oxidation in skeletal muscle. PLoS ONE. 7: e33815 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Choi J, Park J-K, Lee K-T, Park K-K, Kim W-B, Lee J-H, Jung H-J, Park H-J. In vivo antihepatotoxic effects of Ligularia fischeri var. spiciformis and the identification of the active component, 3,4-dicaffeoylquinic acid. Journal of Medicinal Food. 8: 348-352 (2005)

    Article  CAS  PubMed  Google Scholar 

  • Choi Y-G, Yeo S, Kim S-H, Lim S. Anti-inflammatory changes of gene expression by Artemisia iwayomogi in the LPS-stimulated human gingival fibroblast: microarray analysis. Archives of Pharmacal Research. 35: 549-563 (2012)

    Article  CAS  PubMed  Google Scholar 

  • Choi Y, Yanagawa Y, Kim S, Whang WK, Park T. Artemisia iwayomogi extract attenuates high-fat diet-induced obesity by decreasing the expression of genes associated with adipogenesis in mice. Evidence-Based Complementary and Alternative Medicine. 2013: 11 (2013)

  • Chu DT, Gawronska-Kozak B. Brown and brite adipocytes: Same function, but different origin and response. Biochimie. 138: 102-105 (2017)

    Article  CAS  PubMed  Google Scholar 

  • Devereux RB. Appetite suppressants and valvular heart disease. The New England Journal of Medicine. 339: 765–767 (1998)

  • Dobrzyn P, Dobrzyn A, Miyazaki M, Cohen P, Asilmaz E, Hardie DG, Friedman JM, Ntambi JM. Stearoyl-CoA desaturase 1 deficiency increases fatty acid oxidation by activating AMP-activated protein kinase in liver. Proceedings of the National Academy of Sciences of the United States of America. 101: 6409-6414 (2004)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hanefeld M, Sachse G. The effects of orlistat on body weight and glycaemic control in overweight patients with type 2 diabetes: a randomized, placebo‐controlled trial. Diabetes, Obesity and Metabolism. 4: 415-423 (2002)

    Article  CAS  Google Scholar 

  • Harper M-E, Green K, Brand MD. The efficiency of cellular energy transduction and its implications for obesity. Annual Review of Nutrition. 28: 13-33 (2008)

    Article  CAS  PubMed  Google Scholar 

  • Johnston K, Sharp P, Clifford M, Morgan L. Dietary polyphenols decrease glucose uptake by human intestinal Caco‐2 cells. FEBS Letters. 579: 1653-1657 (2005)

    Article  CAS  PubMed  Google Scholar 

  • Kang NH, Mukherjee S, Min T, Kang SC, Yun JW. Trans-anethole ameliorates obesity via induction of browning in white adipocytes and activation of brown adipocytes. Biochimie. 151: 1-13 (2018)

    Article  CAS  PubMed  Google Scholar 

  • Kim SJ, Choung SY. Inhibitory effects of Aster spathulifolius extract on adipogenesis and lipid accumulation in 3T3‐L1 preadipocytes. Journal of Pharmacy and Pharmacology. 68: 107-118 (2016)

    Article  CAS  PubMed  Google Scholar 

  • Kim SH, Plutzky J. Brown fat and browning for the treatment of obesity and related metabolic disorders. Diabetes & Metabolism Journal. 40: 12-21 (2016)

    Article  Google Scholar 

  • Kozak L, Anunciado-Koza R. UCP1: its involvement and utility in obesity. International Journal of Obesity. 32: S32-S38 (2008)

    Article  CAS  PubMed  Google Scholar 

  • Lee SB, Lee SM, Cho TS, Shim SB, Yoon KW, Lee JC. A Study on the Hepatoprotective effect of PS-1 from Artemisia iwayomogi. Biomolecules & Therapeutics. 6: 119-129 (1998)

    Google Scholar 

  • Lee D, Kwak HJ, Kim BH, Kim SH, Kim D-W, Kang KS. Combined Anti-Adipogenic Effects of Hispidulin and p-Synephrine on 3T3-L1 Adipocytes. Biomolecules. 11: 1764 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lone J, Choi JH, Kim SW, Yun JW. Curcumin induces brown fat-like phenotype in 3T3-L1 and primary white adipocytes. Journal of Nutritional Biochemistry. 27: 193-202 (2016)

    Article  CAS  PubMed  Google Scholar 

  • Miyamae Y, Kurisu M, Han J, Isoda H, Shigemori H. Structure–activity relationship of caffeoylquinic acids on the accelerating activity on ATP production. Chemical and Pharmaceutical Bulletin. 59: 502-507 (2011)

    Article  CAS  PubMed  Google Scholar 

  • Montanari T, Pošćić N, Colitti M. Factors involved in white‐to‐brown adipose tissue conversion and in thermogenesis: a review. Obesity Reviews. 18: 495-513 (2017)

    Article  CAS  PubMed  Google Scholar 

  • Montanari T, Boschi F, Colitti M. Comparison of the effects of browning-inducing capsaicin on two murine adipocyte models. Frontiers in Physiology. 10: 1380 (2019)

    Article  PubMed  PubMed Central  Google Scholar 

  • Park E, Lee CG, Kim J, Lim E, Yeo S, Jeong S-Y. Scopolin prevents adipocyte dierentiation in 3t3-l1 preadipocytes and weight gain in an ovariectomy-induced obese mouse model. International Journal of Molecular Sciences. 21: 8699 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Parray HA, Lone J, Park JP, Choi JW, Yun JW. Magnolol promotes thermogenesis and attenuates oxidative stress in 3T3-L1 adipocytes. Nutrition. 50: 82-90 (2018)

    Article  CAS  PubMed  Google Scholar 

  • Rebollo-Hernanz M, Zhang Q, Aguilera Y, Martín-Cabrejas MA, Gonzalez de Mejia E. Relationship of the phytochemicals from coffee and cocoa by-products with their potential to modulate biomarkers of metabolic syndrome In Vitro. Antioxidants. 8: 279 (2019)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rosen ED, MacDougald OA. Adipocyte differentiation from the inside out. Nature Reviews Molecular Cell Biology. 7: 885 (2006)

    Article  CAS  PubMed  Google Scholar 

  • Saely CH, Geiger K, Drexel H. Brown versus white adipose tissue: a mini-review. Gerontology. 58: 15-23 (2012)

    Article  PubMed  Google Scholar 

  • Saper CB, Chou TC, Elmquist JK. The need to feed: homeostatic and hedonic control of eating. Neuron. 36: 199-211 (2002)

    Article  CAS  PubMed  Google Scholar 

  • Singla P, Bardoloi A, Parkash AA. Metabolic effects of obesity: a review. World Journal of Diabetes. 1: 76 (2010)

    Article  PubMed  PubMed Central  Google Scholar 

  • Song N-J, Chang S-H, Li DY, Villanueva CJ, Park KW. Induction of thermogenic adipocytes: molecular targets and thermogenic small molecules. Experimental & Molecular Medicine. 49: e353 (2017)

    Article  Google Scholar 

  • Spalding KL, Arner E, Westermark PO, Bernard S, Buchholz BA, Bergmann O, Blomqvist L, Hoffstedt J, Näslund E, Britton T. Dynamics of fat cell turnover in humans. Nature. 453: 783 (2008)

    Article  CAS  PubMed  Google Scholar 

  • Tseng Y-H, Cypess AM, Kahn CR. Cellular bioenergetics as a target for obesity therapy. Nature Reviews Drug Discovery. 9: 465 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang S, Liang X, Yang Q, Fu X, Rogers CJ, Zhu M, Rodgers B, Jiang Q, Dodson MV, Du M. Resveratrol induces brown-like adipocyte formation in white fat through activation of AMP-activated protein kinase (AMPK) α1. International Journal of Obesity. 39: 967 (2015)

    Article  CAS  PubMed  Google Scholar 

  • WHO. Obesity: preventing and managing the global epidemic: report of a WHO consultation on obesity. (1997)

    Google Scholar 

  • Yamaguchi J, Tanaka T, Saito H, Nomura S, Aburatani H, Waki H, Kadowaki T, Nangaku M. Echinomycin inhibits adipogenesis in 3T3-L1 cells in a HIF-independent manner. Scientific Reports. 7: 6516 (2017)

    Article  PubMed  PubMed Central  Google Scholar 

  • Yan M, Audet-Walsh É, Manteghi S, Dufour CR, Walker B, Baba M, St-Pierre J, Giguère V, Pause A. Chronic AMPK activation via loss of FLCN induces functional beige adipose tissue through PGC-1α/ERRα. Genes & Development. 30: 1034-1046 (2016)

    Article  CAS  Google Scholar 

  • Yoneshiro T, Aita S, Kawai Y, Iwanaga T, Saito M. Nonpungent capsaicin analogs (capsinoids) increase energy expenditure through the activation of brown adipose tissue in humans. The American Journal of Clinical Nutrition. 95: 845-850 (2012)

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research is supported by National Research Foundation of Korea (NRF) Grant funded by Ministry of Science and ICT (2021R1F1A1061287).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hyeyoung Min.

Ethics declarations

Competing interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, SY., Kim, J., Kim, B.K. et al. Effects of caffeoylquinic acid analogs derived from aerial parts of Artemisia iwayomogi on adipogenesis. Food Sci Biotechnol 32, 1215–1223 (2023). https://doi.org/10.1007/s10068-023-01262-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10068-023-01262-9

Keywords

Navigation

-