Skip to main content
Log in

Effects of mesenchymal stem cells versus curcumin on sonic hedgehog signaling in experimental model of Hepatocellular Carcinoma

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Background

Sonic Hedgehog (SHH) is a fundamental signaling pathway that controls tissue reconstruction, stem cell biology, and differentiation and has a role in gut tissue homeostasis and development. Dysregulation of SHH leads to the development of HCC.

Methods, and results

The present study was conducted to compare the effects of mesenchymal stem cells (MSCs) and curcumin on SHH molecular targets in an experimental model of HCC in rats. One hundred rats were divided equally into the following groups: control group, HCC group, HCC group received MSCs, HCC group received curcumin, and HCC group received MSCs and curcumin. Histopathological examinations were performed, and gene expression of SHH signaling target genes (SHH, PTCH1, SMOH, and GLI1) was assessed by real-time PCR in rat liver tissue. Results showed that SHH target genes were significantly upregulated in HCC-untreated rat groups and in MSC-treated groups, with no significant difference between them. Administration of curcumin with or without combined administration of MSCs led to a significant down-regulation of SHH target genes, with no significant differences between both groups. As regards the histopathological examination of liver tissues, both curcumin and MSCs, either through separate use or their combined use, led to a significant restoration of normal liver pathology.

Conclusions

In conclusion, SHH signaling is upregulated in the HCC experimental model. MSCs do not inhibit the upregulated SHH target genes in HCC. Curcumin use with or without MSCs administration led to a significant down-regulation of SHH signaling in HCC and a significant restoration of normal liver pathology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

No datasets were generated or analysed during the current study.

Abbreviations

HCC:

Hepatocellular carcinoma

MSCs:

Mesenchymal stem cells

SHH:

Sonic Hedgehog

PTCH1:

Patched 1

SMOH:

Smoothened homolog

GLI1:

Glioma-associated oncogene

References

  1. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, Bray F (2021) Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. Cancer J Clin 71(3):209–249

    Article  Google Scholar 

  2. Abudeif A (2019) Epidemiology and risk factors of hepatocellular carcinoma in Egypt. Sohag Med J 23(3):8–12

    Article  Google Scholar 

  3. Ezzat R, Eltabbakh M, El Kassas M (2021) Unique situation of hepatocellular carcinoma in Egypt: A review of epidemiology and control measures. World Journal of Gastrointestinal Oncology, 13(12), 1919

  4. Terlapu PV, Gedela SB, Gangu VK, Pemula R (2022) Intelligent diagnosis system of hepatitis C virus: a probabilistic neural network based approach. Int J Imaging Syst Technol 32(6):2107–2136

    Article  Google Scholar 

  5. Huang DQ, El-Serag HB, Loomba R (2021) Global epidemiology of NAFLD-related HCC: trends, predictions, risk factors and prevention. Nat Reviews Gastroenterol Hepatol 18(4):223–238

    Article  Google Scholar 

  6. Koulouris A, Tsagkaris C, Spyrou V, Pappa E, Troullinou A, Nikolaou M (2021) Hepatocellular carcinoma: an overview of the changing landscape of treatment options. J Hepatocellular Carcinoma, 387–401

  7. Piñero F, Dirchwolf M, Pessôa MG (2020) Biomarkers in hepatocellular carcinoma: diagnosis, prognosis and treatment response assessment. Cells 9(6):1370

    Article  PubMed  PubMed Central  Google Scholar 

  8. Ma C, Hu K, Ullah I, Zheng Q-K, Zhang N, Sun Z-G (2022) Molecular mechanisms involving the sonic hedgehog pathway in lung cancer therapy: recent advances. Front Oncol 12:729088

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Feng Z, Zhu S, Li W, Yao M, Song H, Wang R-B (2022) Current approaches and strategies to identify hedgehog signaling pathway inhibitors for cancer therapy. Eur J Med Chem 244:114867

    Article  CAS  PubMed  Google Scholar 

  10. Bariwal J, Kumar V, Dong Y, Mahato RI (2019) Design of hedgehog pathway inhibitors for cancer treatment. Med Res Rev 39(3):1137–1204

    Article  CAS  PubMed  Google Scholar 

  11. Bissey PA, Mathot P, Guix C, Jasmin M, Goddard I, Costechareyre C, Gadot N, Delcros JG, Mali SM, Fasan R, Arrigo AP (2020) Blocking SHH/Patched interaction triggers tumor growth inhibition through patched-induced apoptosis. Cancer Res 80(10):1970–1980

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Chai JY, Sugumar V, Alshawsh MA, Wong WF, Arya A, Chong PP, Looi CY (2021) The role of smoothened-dependent and-independent hedgehog signaling pathway in tumorigenesis. Biomedicines 9(9):1188

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Huang Y, Jiang C, Chen L, Han J, Liu M, Zhou T, Dong N, Xu K (2023) Gli1 promotes the phenotypic transformation of valve interstitial cells through hedgehog pathway activation exacerbating calcific aortic valve disease. Int J Biol Sci 19(7):2053

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Jeng KS, Jeng CJ, Jeng WJ, Sheen I, Li SY, Leu CM, Tsay YG, Chang CF (2019) Sonic hedgehog signaling pathway as a potential target to inhibit the progression of hepatocellular carcinoma. Oncol Lett 18(5):4377–4384

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Della Corte CM, Viscardi G, Papaccio F, Esposito G, Martini G, Ciardiello D, Martinelli E, Ciardiello F, Morgillo F (2017) Implication of the hedgehog pathway in hepatocellular carcinoma. World J Gastroenterol 23(24):4330

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Zhao J, Li R, Li J, Chen Z, Lin Z, Zhang B, Deng L, Chen G, Wang Y (2022) CAFs-derived SCUBE1 promotes malignancy and stemness through the Shh/Gli1 pathway in hepatocellular carcinoma. J Translational Med 20(1):1–16

    Article  Google Scholar 

  17. Liu SJ, Zang YW, Huang CJ, Liu YJ (2024) Downregulation of Rab23 inhibits hepatocellular carcinoma by repressing SHH signaling pathway. Cancer Rep 7(1):e1921

    Article  CAS  Google Scholar 

  18. Giakoustidis A, Giakoustidis D, Mudan S, Sklavos A, Williams R (2015) Molecular signalling in hepatocellular carcinoma: role of and crosstalk among WNT/β-catenin, Sonic hedgehog, notch and Dickkopf-1. Can J Gastroenterol Hepatol 29:209–217

    Article  PubMed  PubMed Central  Google Scholar 

  19. Rathore S, Mukim M, Sharma P, Devi S, Nagar JC, Khalid M (2020) Curcumin: a review for health benefits. Int J Res Rev 7(1):273–290

    CAS  Google Scholar 

  20. Giordano A, Tommonaro G (2019) Curcumin and cancer. Nutrients 11(10):2376

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Yang X, Tian S, Fan L, Niu R, Yan M, Chen S, Zheng M, Zhang S (2022) Integrated regulation of chondrogenic differentiation in mesenchymal stem cells and differentiation of cancer cells. Cancer Cell Int 22(1):1–13

    Article  CAS  Google Scholar 

  22. Zhang K, Che S, Pan C, Su Z, Zheng S, Yang S, Zhang H, Li W, Wang W, Liu J (2018) The SHH/Gli axis regulates CD 90-mediated liver cancer stem cell function by activating the IL 6/JAK 2 pathway. J Cell Mol Med 22(7):3679–3690

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Zhang X, Li N, Zhu Y, Wen W (2022) The role of mesenchymal stem cells in the occurrence, development, and therapy of hepatocellular carcinoma. Cancer Med 11(4):931–943

    Article  PubMed  PubMed Central  Google Scholar 

  24. Maulina T, Hadikrishna I, Hardianto A, Sjamsudin E, Pontjo B, Yusuf HY (2019) The therapeutic activity of curcumin through its anti-cancer potential on oral squamous cell carcinoma: a study on Sprague Dawley rat. SAGE open Med 7:2050312119875982

    Article  PubMed  PubMed Central  Google Scholar 

  25. Soleimani M, Nadri S (2009) A protocol for isolation and culture of mesenchymal stem cells from mouse bone marrow. Nat Protoc 4(1):102–106

    Article  CAS  PubMed  Google Scholar 

  26. Chiang H, Hsieh CH, Lin YH, Lin S, Tsai-Wu JJ, Jiang CC (2011) Differences between chondrocytes and bone marrow-derived chondrogenic cells. Tissue Eng Part A 17(23–24):2919–2929

    Article  CAS  PubMed  Google Scholar 

  27. Sundaresan S, Subramanian P (2008) Prevention of N-nitrosodiethylamine-induced hepatocarcinogenesis by S-allylcysteine. Mol Cell Biochem 310:209–214

    Article  CAS  PubMed  Google Scholar 

  28. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2–∆∆CT method. Methods 25(4):402–408

    Article  CAS  PubMed  Google Scholar 

  29. Moolgavkar S, Luebeck G (2020) Multistage carcinogenesis: a unified framework for cancer data analysis. Statistical Modeling for Biological Systems: In Memory of Andrei Yakovlev, 117–136

  30. Sanders EJ (2020) Positional Instability in Early Development and Cancer. Growth Regulation and Carcinogenesis: Volume 2

  31. Che L, Yuan YH, Jia J, Ren J (2012) Activation of sonic hedgehog signaling pathway is an independent potential prognosis predictor in human hepatocellular carcinoma patients. Chin J Cancer Res 24:323–331

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Li J, Cai H, Li H, Liu Y, Wang Y, Shi Y, Sun Y, Song H, Wang D (2019) Combined inhibition of sonic hedgehog signaling and histone deacetylase is an effective treatment for liver cancer. Oncol Rep 41(3):1991–1997

    CAS  PubMed  Google Scholar 

  33. Jing J, Wu Z, Wang J, Luo G, Lin H, Fan Y, Zhou C (2023) Hedgehog signaling in tissue homeostasis, cancers, and targeted therapies. Signal Transduct Target Therapy 8(1):315

    Article  Google Scholar 

  34. Zhang J, Tu K, Yang W, Li C, Yao Y, Zheng X, Liu Q (2014) Evaluation of Jagged2 and Gli1 expression and their correlation with prognosis in human hepatocellular carcinoma. Mol Med Rep 10(2):749–754

    Article  CAS  PubMed  Google Scholar 

  35. Doheny D, Manore SG, Wong GL, Lo HW (2020) Hedgehog signaling and truncated GLI1 in cancer. Cells 9(9):2114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Ding J, Li HY, Zhang L, Zhou Y, Wu J (2021) Hedgehog signaling, a critical pathway governing the development and progression of hepatocellular carcinoma. Cells 10(1):123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Bhatia M, Bhalerao M, Cruz-Martins N, Kumar D (2021) Curcumin and cancer biology: focusing regulatory effects in different signalling pathways. Phytother Res 35(9):4913–4929

    Article  CAS  PubMed  Google Scholar 

  38. Wang M, Jiang S, Zhou L, Yu F, Ding H, Li P, Zhou M, Wang K (2019) Potential mechanisms of action of curcumin for cancer prevention: focus on cellular signaling pathways and miRNAs. Int J Biol Sci 15(6):1200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Wong SC, Kamarudin MN, Naidu R (2021) Anticancer mechanism of curcumin on human glioblastoma. Nutrients 13(3):950

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Ghasemi F, Shafiee M, Banikazemi Z, Pourhanifeh MH, Khanbabaei H, Shamshirian A, Moghadam SA, ArefNezhad R, Sahebkar A, Avan A, Mirzaei H (2019) Curcumin inhibits NF-kB and Wnt/β-catenin pathways in cervical cancer cells. Pathology-Research Pract 215(10):152556

    Article  CAS  Google Scholar 

  41. Farghadani R, Naidu R (2021) Curcumin: modulator of key molecular signaling pathways in hormone-independent breast cancer. Cancers 13(14):3427

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Zhu JY, Yang X, Chen Y, Jiang YE, Wang SJ, Li Y, Wang XQ, Meng Y, Zhu MM, Ma X, Huang C (2017) Curcumin suppresses lung cancer stem cells via inhibiting Wnt/β-catenin and sonic hedgehog pathways. Phytother Res 31(4):680–688

    Article  CAS  PubMed  Google Scholar 

  43. Wang D, Kong X, Li Y, Qian W, Ma J, Wang D, Yu D, Zhong C (2017) Curcumin inhibits bladder cancer stem cells by suppressing Sonic hedgehog pathway. Biochem Biophys Res Commun 493(1):521–527

    Article  CAS  PubMed  Google Scholar 

  44. Ślusarz A, Shenouda NS, Sakla MS, Drenkhahn SK, Narula AS, MacDonald RS, Besch-Williford CL, Lubahn DB (2010) Common botanical compounds inhibit the hedgehog signaling pathway in prostate cancer. Cancer Res 70(8):3382–3390

    Article  PubMed  Google Scholar 

  45. Akbarsha MA (2012) Chemopreventive and Chemotherapeutic Potential of Plant Products for Major Cancers of the Reproductive System: Curcumin Stakes its Claim. ISSRF Newsletter, PK Mishra (Ed.), December 2012, 38

  46. Ahn SY (2020) The role of MSCs in the tumor microenvironment and tumor progression. Anticancer Res 40(6):3039–3047

    Article  CAS  PubMed  Google Scholar 

  47. García-Bernal D, García-Arranz M, Yáñez RM, Hervás-Salcedo R, Cortés A, Fernández-García M, Hernando-Rodríguez M, Quintana-Bustamante Ó, Bueren JA, García-Olmo D, Moraleda JM (2021) The current status of mesenchymal stromal cells: controversies, unresolved issues and some promising solutions to improve their therapeutic efficacy. Front cell Dev Biology 9:650664

    Article  Google Scholar 

  48. Qi J, Zhou Y, Jiao Z, Wang X, Zhao Y, Li Y, Chen H, Yang L, Zhu H, Li Y (2017) Exosomes derived from human bone marrow mesenchymal stem cells promote tumor growth through hedgehog signaling pathway. Cell Physiol Biochem 42(6):2242–2254

    Article  CAS  PubMed  Google Scholar 

  49. Slama Y, Ah-Pine F, Khettab M, Arcambal A, Begue M, Dutheil F, Gasque P (2023) The dual role of mesenchymal stem cells in Cancer Pathophysiology: Pro-tumorigenic effects versus therapeutic potential. Int J Mol Sci 24(17):13511

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Zhou Y, Zhou W, Chen X, Wang Q, Li C, Chen Q, Zhang Y, Lu Y, Ding X, Jiang C (2020) Bone marrow mesenchymal stem cells-derived exosomes for penetrating and targeted chemotherapy of pancreatic cancer. Acta Pharm Sinica B 10(8):1563–1575

    Article  CAS  Google Scholar 

  51. Yang J, Lv K, Sun J, Guan J (2019) Anti-tumor effects of engineered mesenchymal stem cells in colon cancer model. Cancer Manage Res, 8443–8450

  52. Melzer C, Ohe Jvd, Hass R (2020) Anti-tumor effects of exosomes derived from drug-incubated permanently growing human MSC. Int J Mol Sci 21(19):7311

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Abd-Allah SH, Shalaby SM, Amal S, Abd Elkader E, Hussein S, Emam E, Mazen NF, El Kateb M, Atfy M (2014) Effect of bone marrow–derived mesenchymal stromal cells on hepatoma. Cytotherapy 16(9):1197–1206

    Article  CAS  PubMed  Google Scholar 

  54. Ai J, Ketabchi N, Verdi J, Gheibi N, Khadem Haghighian H, Kavianpour M (2019) Mesenchymal stromal cells induce inhibitory effects on hepatocellular carcinoma through various signaling pathways. Cancer Cell Int 19(1):1–13

    Article  Google Scholar 

  55. Hajighasemlou S, Nikbakht M, Pakzad S, Muhammadnejad S, Gharibzadeh S, Mirmoghtadaei M, Zafari F, Seyhoun I, Ai J, Verdi J (2020) Sorafenib and mesenchymal stem cell therapy: a promising approach for treatment of HCC. Evidence-Based Complementary and Alternative Medicine, 2020

  56. Rahmatizadeh F, Aziz SG, Khodadadi K, Ataei ML, Ebrahimie E, Rad JS, Pashaiasl M (2019) Bidirectional and opposite effects of naïve mesenchymal stem cells on tumor growth and progression. Adv Pharm Bull 9(4):539

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Ring A, Kim YM, Kahn M (2014) Wnt/catenin signaling in adult stem cell physiology and disease. Stem Cell Reviews Rep 10:512–525

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The researchers are grateful for all the medical experts who helped with the research process.

Funding

This research received no specific funding from any governmental funding agency.

Author information

Authors and Affiliations

Authors

Contributions

The study’s architecture, analysis of data, and article writing were significantly aided by MA. ER performed experimental animal work. HR, and ND finishing up the molecular work and analysis. HF, EF, and MA analyzed the clinical data. AY and EF carried out the histological examination and analysis. Moreover, HF and AY carried out statistical analysis. All writers reviewed and approved the final version of the work in addition to doing the final manuscript review.

Corresponding author

Correspondence to Marwa Sayed Abdel-Tawab.

Ethics declarations

Ethical approval

In compliance with National Centre for the Replacement, Refinement, and Reduction of Animals in Research (NC3Rs) guidelines, the Institutional Animal Care and Use Committee of Beni-Suef University (BSU-IACUC) approved the current study’s protocol with the code 022–454.

Consent to publication

There were no specifics, pictures, or videos in our raw data or manuscript.

Competing interests

The writers declared that they had no possible conflicts of interest about the research, writing, or publication of this work.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdel-Tawab, M.S., Fouad, H., Sedeak, A.Y. et al. Effects of mesenchymal stem cells versus curcumin on sonic hedgehog signaling in experimental model of Hepatocellular Carcinoma. Mol Biol Rep 51, 740 (2024). https://doi.org/10.1007/s11033-024-09613-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11033-024-09613-3

Keywords

Navigation

-