Skip to main content

Advertisement

Log in

Evaluation of Temperature-Sensitive, Indocyanine Green-Encapsulating Micelles for Noninvasive Near-Infrared Tumor Imaging

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

ABSTRACT

Purpose

Indocyanine green (ICG), an FDA-approved near infrared (NIR) dye, has potential application as a contrast agent for tumor detection. Because ICG binds strongly to plasma proteins and exhibits aqueous, photo, and thermal instability, its current applications are largely limited to monitoring blood flow. To address these issues, ICG was encapsulated and stabilized within polymeric micelles formed from the thermo-sensitive block copolymer Pluronic F-127, poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide), to increase the stability and circulation time of ICG.

Methods

ICG-loaded Pluronic micelles were prepared at various concentrations of Pluronic and ICG and characterized by determining particle sizes, dye loading efficiency, and the kinetics of dye degradation. Förster resonance energy transfer spectroscopy was employed to monitor the stability of Pluronic micelles in physiological solutions. The plasma clearance kinetics and biodistribution of ICG-loaded micelles was also determined after intravenous delivery to CT-26 colon carcinoma tumor-bearing mice, and NIR whole-body imaging was performed for tumor detection.

Results

The Pluronic F-127 micelles showed efficient ICG loading, small size, stabilized ICG fluorescence, and prolonged circulation in vivo. Solid tumors in mice were specifically visualized after intravenous administration of ICG-loaded micelles.

Conclusions

These materials are therefore promising formulations for noninvasive NIR tumor imaging applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

REFERENCES

  1. Ke S, Wen X, Gurfinkel M, Charnsangavej C, Wallace S, Sevick-Muraca EM, et al. Near-infrared optical imaging of epidermal growth factor receptor in breast cancer xenografts. Cancer Res. 2003;63:7870–5.

    CAS  PubMed  Google Scholar 

  2. Klohs J, Wunder A, Licha K. Near-infrared fluorescent probes for imaging vascular pathophysiology. Basic Res Cardiol. 2008;103:144–51.

    Article  CAS  PubMed  Google Scholar 

  3. Taroni P, Pifferi A, Torricelli A, Comelli D, Cubeddu R. In vivo absorption and scattering spectroscopy of biological tissues. Photochem Photobiol Sci. 2003;2:124–9.

    Article  CAS  PubMed  Google Scholar 

  4. Licha K, Olbrich C. Optical imaging in drug discovery and diagnostic applications. Adv Drug Deliv Rev. 2005;57:1087–108.

    Article  CAS  PubMed  Google Scholar 

  5. Rao J, Dragulescu-Andrasi A, Yao H. Fluorescence imaging in vivo: recent advances. Curr Opin Biotechnol. 2007;18:17–25.

    Article  CAS  PubMed  Google Scholar 

  6. Saxena V, Sadoqi M, Shao J. Degradation kinetics of indocyanine green in aqueous solution. J Pharm Sci. 2003;92:2090–7.

    Article  CAS  PubMed  Google Scholar 

  7. Slakter JS, Yannuzzi LA, Guyer DR, Sorenson JA, Orlock DA. Indocyanine-green angiography. Curr Opin Ophthalmol. 1995;6:25–32.

    CAS  PubMed  Google Scholar 

  8. Caesar J, Shaldon S, Chiandussi L, Guevara L, Sherlock S. The use of indocyanine green in the measurement of hepatic blood flow and as a test of hepatic function. Clin Sci. 1961;21:43–57.

    CAS  PubMed  Google Scholar 

  9. Maarek JM, Holschneider DP, Rubinstein EH. Fluorescence dilution technique for measurement of cardiac output and circulating blood volume in healthy human subjects. Anesthesiology. 2007;106:491–8.

    Article  PubMed  Google Scholar 

  10. Paumgart G, Probst P, Kraines R, Leevy CM. Kinetics of indocyanine green removal from blood. Ann N Y Acad Sci. 1970;170:134–47.

    Article  Google Scholar 

  11. Intes X, Ripoll J, Chen Y, Nioka S, Yodh AG, Chance B. In vivo continuous-wave optical breast imaging enhanced with Indocyanine Green. Med Phys. 2003;30:1039–47.

    Article  PubMed  Google Scholar 

  12. Ntziachristos V, Yodh AG, Schnall M, Chance B. Concurrent MRI and diffuse optical tomography of breast after indocyanine green enhancement. Proc Natl Acad Sci U S A. 2000;97:2767–72.

    Article  CAS  PubMed  Google Scholar 

  13. Saxena V, Sadoqi M, Shao J. Enhanced photo-stability, thermal-stability and aqueous-stability of indocyanine green in polymeric nanoparticulate systems. J Photochem Photobiol B. 2004;74:29–38.

    Article  CAS  PubMed  Google Scholar 

  14. Fickweiler S, Szeimies RM, Baumler W, Steinbach P, Karrer S, Goetz AE, et al. Indocyanine green: intracellular uptake and phototherapeutic effects in vitro. J Photochem Photobiol B. 1997;38:178–83.

    Article  CAS  PubMed  Google Scholar 

  15. Kim G, Huang SW, Day KC, O’Donnell M, Agayan RR, Day MA, et al. Indocyanine-green-embedded PEBBLEs as a contrast agent for photoacoustic imaging. J Biomed Opt. 2007;12:044020.

    Article  PubMed  Google Scholar 

  16. Saxena V, Sadoqi M, Shao J. Polymeric nanoparticulate delivery system for Indocyanine green: biodistribution in healthy mice. Int J Pharm. 2006;308:200–4.

    Article  CAS  PubMed  Google Scholar 

  17. Choi SH, Lee JH, Choi SM, Park TG. Thermally reversible pluronic/heparin nanocapsules exhibiting 1000-fold volume transition. Langmuir. 2006;22:1758–62.

    Article  CAS  PubMed  Google Scholar 

  18. Cardillo JA, Jorge R, Costa RA, Nunes SM, Lavinsky D, Kuppermann BD, et al. Experimental selective choriocapillaris photothrombosis using a modified indocyanine green formulation. Br J Ophthalmol. 2008;92:276–80.

    Article  CAS  PubMed  Google Scholar 

  19. Licha K, Riefke B, Ntziachristos V, Becker A, Chance B, Semmler W. Hydrophilic cyanine dyes as contrast agents for near-infrared tumor imaging: synthesis, photophysical properties and spectroscopic in vivo characterization. Photochem Photobiol. 2000;72:392–8.

    Article  CAS  PubMed  Google Scholar 

  20. Kirchherr AK, Briel A, Mader K. Stabilization of indocyanine green by encapsulation within micellar systems. Mol Pharm. 2009;6:480–91.

    Article  CAS  PubMed  Google Scholar 

  21. Rodriguez VB, Henry SM, Hoffman AS, Stayton PS, Li X, Pun SH. Encapsulation and stabilization of indocyanine green within poly(styrene-alt-maleic anhydride) block-poly(styrene) micelles for near-infrared imaging. J Biomed Opt. 2008;13:014025.

    Article  PubMed  Google Scholar 

  22. Soppimath KS, Aminabhavi TM, Kulkarni AR, Rudzinski WE. Biodegradable polymeric nanoparticles as drug delivery devices. J Control Release. 2001;70:1–20.

    Article  CAS  PubMed  Google Scholar 

  23. Peer D, Karp JM, Hong S, Farokhzad OC, Margalit R, Langer R. Nanocarriers as an emerging platform for cancer therapy. Nat Nanotechnol. 2007;2:751–60.

    Article  CAS  PubMed  Google Scholar 

  24. Blanco E, Kessinger CW, Sumer BD, Gao J. Multifunctional micellar nanomedicine for cancer therapy. Exp Biol Med (Maywood). 2009;234:123–31.

    Article  CAS  Google Scholar 

  25. Romberg B, Hennink WE, Storm G. Sheddable coatings for long-circulating nanoparticles. Pharm Res. 2008;25:55–71.

    Article  CAS  PubMed  Google Scholar 

  26. Yu J, Yaseen MA, Anvari B, Wong MS. Synthesis of near-infrared-absorbing nanoparticle-assembled capsules. Chem Mater. 2007;19:1277–84.

    Article  CAS  Google Scholar 

  27. Liu H, Farrell S, Uhrich K. Drug release characteristics of unimolecular polymeric micelles. J Control Release. 2000;68:167–74.

    Article  CAS  PubMed  Google Scholar 

  28. Moghimi SM, Porter CJ, Muir IS, Illum L, Davis SS. Non-phagocytic uptake of intravenously injected microspheres in rat spleen: influence of particle size and hydrophilic coating. Biochem Biophys Res Commun. 1991;177:861–6.

    Article  CAS  PubMed  Google Scholar 

  29. Yuan F, Dellian M, Fukumura D, Leunig M, Berk DA, Torchilin VP, et al. Vascular permeability in a human tumor xenograft: molecular size dependence and cutoff size. Cancer Res. 1995;55:3752–6.

    CAS  PubMed  Google Scholar 

  30. Stolnik S, Illum L, Davis SS. Long circulating microparticulate drug carriers. Adv Drug Deliv Rev. 1995;16:195–214.

    Article  CAS  Google Scholar 

  31. Bhardwajand R, Blanchard J. Controlled-release delivery system for the alpha-MSH analog melanotan-I using poloxamer 407. J Pharm Sci. 1996;85:915–9.

    Article  Google Scholar 

  32. Bae KH, Lee Y, Park TG. Oil-encapsulating PEO-PPO-PEO/PEG shell cross-linked nanocapsules for target-specific delivery of paclitaxel. Biomacromolecules. 2007;8:650–6.

    Article  CAS  PubMed  Google Scholar 

  33. Batrakova EV, Kabanov AV. Pluronic block copolymers: evolution of drug delivery concept from inert nanocarriers to biological response modifiers. J Control Release. 2008;130:98–106.

    Article  CAS  PubMed  Google Scholar 

  34. Chen H, Kim S, He W, Wang H, Low PS, Park K, et al. Fast release of lipophilic agents from circulating PEG-PDLLA micelles revealed by in vivo forster resonance energy transfer imaging. Langmuir. 2008;24:5213–7.

    Article  CAS  PubMed  Google Scholar 

  35. Rajagopalan R, Uetrecht P, Bugaj JE, Achilefu SA, Dorshow RB. Stabilization of the optical tracer agent indocyanine green using noncovalent interactions. Photochem Photobiol. 2000;71:347–50.

    Article  CAS  PubMed  Google Scholar 

  36. Sauda K, Imasaka T, Ishibashi N. Determination of protein in human-serum by high-performance liquid-chromatography with semiconductor-laser fluorometric detection. Anal Chem. 1986;58:2649–53.

    Article  CAS  PubMed  Google Scholar 

  37. Kabanov AV, Batrakova EV, Alakhov VY. Pluronic block copolymers as novel polymer therapeutics for drug and gene delivery. J Control Release. 2002;82:189–212.

    Article  CAS  PubMed  Google Scholar 

  38. Malmsten M, Lindman B. Self-assembly in aqueous block copolymer solutions. Macromolecules. 1992;25:5440–5.

    Article  CAS  Google Scholar 

  39. Gomes AJ, Lunardi LO, Marchetti JM, Lunardi CN, Tedesco AC. Indocyanine green nanoparticles useful for photomedicine. Photomed Laser Surg. 2006;24:514–21.

    Article  CAS  PubMed  Google Scholar 

  40. Devoisselle JM, Soulie-Begu S, Mordon S, Desmettre T, Maillols H. Fluorescence properties of indocyanine green: I.in-vitro study with micelles and liposomes. In: Thompson RB, editor. SPIE, Vol. 2980, Advances in Fluorescence Sensing Technology III, San Jose, CA, USA; 1997, p. 530–537.

  41. Altinoglu EI, Russin TJ, Kaiser JM, Barth BM, Eklund PC, Kester M, et al. Near-infrared emitting fluorophore-doped calcium phosphate nanoparticles for in vivo imaging of human breast cancer. ACS Nano. 2008;2:2075–84.

    Article  CAS  PubMed  Google Scholar 

  42. Chen H, Kim S, Li L, Wang S, Park K, Cheng JX. Release of hydrophobic molecules from polymer micelles into cell membranes revealed by Forster resonance energy transfer imaging. Proc Natl Acad Sci U S A. 2008;105:6596–601.

    Article  CAS  PubMed  Google Scholar 

  43. Yaseen MA, Yu J, Jung BS, Wong MS, Anvari B. Biodistribution of encapsulated indocyanine green in healthy mice. Mol Pharm. 2009;6:1321–32.

    Article  CAS  PubMed  Google Scholar 

  44. Kozlov MY, Melik-Nubarov NS, Batrakova EV, Kabanov AV. Relationship between pluronic block copolymer structure, critical micellization concentration and partitioning coefficients of low molecular mass solutes. Macromolecules. 2000;33:3305–13.

    Article  CAS  Google Scholar 

  45. le Masne Q, de Chermont C, Chaneac JS, Pelle F, Maitrejean S, Jolivet JP, et al. Nanoprobes with near-infrared persistent luminescence for in vivo imaging. Proc Natl Acad Sci U S A. 2007;104:9266–71.

    Article  Google Scholar 

  46. Batrakova EV, Li S, Li YL, Alakhov VY, Elmquist WF, Kabanov AV. Distribution kinetics of a micelle-forming block copolymer Pluronic P85. J Control Release. 2004;100:389–97.

    Article  CAS  PubMed  Google Scholar 

  47. Ishida T, Atobe K, Wang X, Kiwada H. Accelerated blood clearance of PEGylated liposomes upon repeated injections: effect of doxorubicin-encapsulation and high-dose first injection. J Control Release. 2006;115:251–8.

    Article  CAS  PubMed  Google Scholar 

  48. Ishida T, Ichihara M, Wang X, Yamamoto K, Kimura J, Majima E, et al. Injection of PEGylated liposomes in rats elicits PEG-specific IgM, which is responsible for rapid elimination of a second dose of PEGylated liposomes. J Control Release. 2006;112:15–25.

    Article  CAS  PubMed  Google Scholar 

  49. Koide H, Asai T, Hatanaka K, Urakami T, Ishii T, Kenjo E, et al. Particle size-dependent triggering of accelerated blood clearance phenomenon. Int J Pharm. 2008;362:197–200.

    Article  CAS  PubMed  Google Scholar 

  50. Tanaka E, Choi HS, Humblet V, Ohnishi S, Laurence RG, Frangioni JV. Real-time intraoperative assessment of the extrahepatic bile ducts in rats and pigs using invisible near-infrared fluorescent light. Surgery. 2008;144:39–48.

    Article  PubMed  Google Scholar 

  51. Desmettre T, Devoisselle JM, Mordon S. Fluorescence properties and metabolic features of indocyanine green (ICG) as related to angiography. Surv Ophthalmol. 2000;45:15–27.

    Article  CAS  PubMed  Google Scholar 

  52. Alexandridis P, Holzwarth JF, Hatton TA. Micellization of Poly(Ethylene Oxide)-Poly(Propylene Oxide)-Poly(Ethylene Oxide) Triblock Copolymers in Aqueous-Solutions—Thermodynamics of Copolymer Association. Macromolecules. 1994;27:2414–25.

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGEMENTS

This work was supported by the funds from the Washington Technology Center and Omeros Corporation (Pun and Li), and in part by the National Institutes of Health (Grant No. R01 CA120480-Li). Xenogen Spectrum imaging was conducted through the Center for Intracellular Delivery of Biologics, funded by Washington State Life Sciences Discovery Fund Grant 2496490.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xingde Li or Suzie H. Pun.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, T.H., Chen, Y., Mount, C.W. et al. Evaluation of Temperature-Sensitive, Indocyanine Green-Encapsulating Micelles for Noninvasive Near-Infrared Tumor Imaging. Pharm Res 27, 1900–1913 (2010). https://doi.org/10.1007/s11095-010-0190-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-010-0190-y

KEY WORDS

Navigation

-