Skip to main content

Advertisement

Log in

Cholesterol-Lowering Nutraceuticals Affecting Vascular Function and Cardiovascular Disease Risk

  • Lipid Abnormalities and Cardiovascular Prevention (G De Backer, Section Editor)
  • Published:
Current Cardiology Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

The aim of this review is to provide an update on the effects of the dietary supplementation with cholesterol-lowering nutraceuticals and nutraceutical combinations affecting vascular function and CV risk in clinical interventional studies.

Recent Findings

Current evidence supports the mild-to-moderate cholesterol-lowering efficacy of red yeast rice, berberine, plant sterols, fibers, and some nutraceutical combinations whereas data on the individual cholesterol-lowering action of other nutraceuticals are either less striking or even inconclusive. There is also promising evidence on the vascular protective effects of some of the aforementioned nutraceuticals. However, except for red yeast rice, clinical interventional studies have not investigated their impact on CV outcomes.

Summary

Evidence of both cholesterol-lowering and vascular protection is a prerogative of few single nutraceuticals and nutraceutical combinations, which may support their clinical use; however, caution on their uncontrolled adoption is necessary as they are freely available on the market and, therefore, subject to potential misuse.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Roth GA, Johnson C, Abajobir A, Abd-Allah F, Abera SF, Abyu G, et al. Global, regional, and national burden of cardiovascular diseases for 10 causes, 1990 to 2015. J Am Coll Cardiol. 2017;70:1–25.

    Article  PubMed  PubMed Central  Google Scholar 

  2. •• Silverman MG, Ference BA, Im K, Wiviott SD, Giugliano RP, Grundy SM, et al. Association between lowering LDL-C and cardiovascular risk reduction among different therapeutic interventions: a systematic review and meta-analysis. JAMA. 2016;316:1289–97. In this meta-analysis, statin and non-statin therapy-reducing LDL cholesterol levels by upregulating LDL receptor were associated with a similar reduction of CV events per change in LDL cholesterol.

    Article  PubMed  CAS  Google Scholar 

  3. Alissa EM, Ferns GA. Functional foods and nutraceuticals in the primary prevention of cardiovascular diseases. J Nutr Metab. 2012;2012:569486.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Mannarino MR, Ministrini S, Pirro M. Nutraceuticals for the treatment of hypercholesterolemia. Eur J Intern Med. 2014;25:592–9.

    Article  PubMed  CAS  Google Scholar 

  5. Sahebkar A, Serban MC, Gluba-Brzózka A, Mikhailidis DP, Cicero AF, Rysz J, et al. Lipid-modifying effects of nutraceuticals: an evidence-based approach. Nutrition. 2016;32:1179–92.

    Article  PubMed  CAS  Google Scholar 

  6. Cicero AFG, Colletti A, Bajraktari G, Descamps O, Djuric DM, Ezhov M, et al. Lipid-lowering nutraceuticals in clinical practice: position paper from an International Lipid Expert Panel. Nutr Rev. 2017;75:731–67.

    Article  PubMed  Google Scholar 

  7. Pirro M, Vetrani C, Bianchi C, Mannarino MR, Bernini F, Rivellese AA. Joint position statement on “Nutraceuticals for the treatment of hypercholesterolemia” of the Italian Society of Diabetology (SID) and of the Italian Society for the Study of Arteriosclerosis (SISA). Nutr Metab Cardiovasc Dis. 2017;27:2–17.

    Article  PubMed  CAS  Google Scholar 

  8. Ward N, Sahebkar A, Banach M, Watts G. Recent perspectives on the role of nutraceuticals as cholesterol-lowering agents. Curr Opin Lipidol. 2017;28:495–501.

    Article  PubMed  CAS  Google Scholar 

  9. Johnston TP, Korolenko TA, Pirro M, Sahebkar A. Preventing cardiovascular heart disease: promising nutraceutical and non-nutraceutical treatments for cholesterol management. Pharmacol Res. 2017;120:219–25.

    Article  PubMed  CAS  Google Scholar 

  10. Viuda-Martos M, López-Marcos MC, Fernández-López J, Sendra E, López-Vargas J, Pérez-Álvarez J. Role of fiber in cardiovascular diseases: a review. Compr Rev Food Sci Food Saf. 2010;9:240–58.

    Article  CAS  Google Scholar 

  11. Chutkan R, Fahey G, Wright WL, McRorie J. Viscous versus nonviscous soluble fiber supplements: mechanisms and evidence for fiber-specific health benefits. J Am Acad Nurse Pract. 2012;24:476–87.

    Article  PubMed  Google Scholar 

  12. Estruch R, Martínez-González MA, Corella D, Basora-Gallisá J, Ruiz-Gutiérrez V, Covas MI, et al. Effects of dietary fibre intake on risk factors for cardiovascular disease in subjects at high risk. J Epidemiol Community Health. 2009;63:582–8.

    Article  PubMed  CAS  Google Scholar 

  13. •• Ho HVT, Jovanovski E, Zurbau A, Blanco Mejia S, Sievenpiper JL, Au-Yeung F, et al. A systematic review and meta-analysis of randomized controlled trials of the effect of konjac glucomannan, a viscous soluble fiber, on LDL cholesterol and the new lipid targets non-HDL cholesterol and apolipoprotein B. Am J Clin Nutr. 2017;105:1239–47. This meta-analysis of 12 randomized clinical trials showed that the oral supplementation of konjac glucomannan reduced significantly LDL and non-HDL cholesterol, supporting its use at the daily dose of 3 g to achieve a reduction in LDL cholesterol and non-HDL cholesterol of 10 and 7%, respectively.

    Article  PubMed  CAS  Google Scholar 

  14. •• Ho HV, Sievenpiper JL, Zurbau A, Blanco Mejia S, Jovanovski E, Au-Yeung F, et al. A systematic review and meta-analysis of randomized controlled trials of the effect of barley β-glucan on LDL-C, non-HDL-C and apoB for cardiovascular disease risk reductioni-iv. Eur J Clin Nutr. 2016;70:1239–45. In this meta-analysis of 14 randomized clinical trials, oral supplementation of barley β-glucan at a mean daily dose of 6.5 and 6.9 g reduced significantly LDL cholesterol and non-HDL cholesterol levels.

    Article  PubMed  CAS  Google Scholar 

  15. Brown L, Rosner B, Willett WW, Sacks FM. Cholesterol-lowering effects of dietary fiber: a meta-analysis. Am J Clin Nutr. 1999;69:30–42.

    Article  PubMed  CAS  Google Scholar 

  16. Sood N, Baker WL, Coleman CI. Effect of glucomannan on plasma lipid and glucose concentrations, body weight, and blood pressure: systematic review and meta-analysis. Am J Clin Nutr. 2008;88:1167–75.

    Article  PubMed  CAS  Google Scholar 

  17. Whitehead A, Beck EJ, Tosh S, Wolever TM. Cholesterol-lowering effects of oat β-glucan: a meta-analysis of randomized controlled trials. Am J Clin Nutr. 2014;100:1413–21.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. • Gulati S, Misra A, Pandey RM. Effects of 3 g of soluble fiber from oats on lipid levels of Asian Indians—a randomized controlled, parallel arm study. Lipids Health Dis. 2017;16:71. In this short-term, prospective, open-labeled, randomized, controlled parallel group study, 3 g of soluble fiber from 70 g of oats reduced significantly LDL cholesterol levels.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Reppas C, Swidan SZ, Tobey SW, Turowski M, Dressman JB. Hydroxypropylmethylcellulose significantly lowers blood cholesterol in mildly hypercholesterolemic human subjects. Eur J Clin Nutr. 2009;63:71–7.

    Article  PubMed  CAS  Google Scholar 

  20. •• Evans CE, Greenwood DC, Threapleton DE, Cleghorn CL, Nykjaer C, Woodhead CE, et al. Effects of dietary fibre type on blood pressure: a systematic review and meta-analysis of randomized controlled trials of healthy individuals. J Hypertens. 2015;33:897–911. In this meta-analysis of 18 randomized controlled trials, a high dietary consumption of beta-glucan reduced significantly blood pressure levels.

    Article  PubMed  CAS  Google Scholar 

  21. Breneman CB, Tucker L. Dietary fibre consumption and insulin resistance—the role of body fat and physical activity. Br J Nutr. 2013;110:375–83.

    Article  PubMed  CAS  Google Scholar 

  22. Ma Y, Hébert JR, Li W, Bertone-Johnson ER, Olendzki B, Pagoto SL, et al. Association between dietary fiber and markers of systemic inflammation in the Women’s Health Initiative Observational Study. Nutrition. 2008;24:941–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Marckmann P, Sandström B, Jespersen J. Low-fat, high-fiber diet favorably affects several independent risk markers of ischemic heart disease: observations on blood lipids, coagulation, and fibrinolysis from a trial of middle-aged Danes. Am J Clin Nutr. 1994;59:935–9.

    Article  PubMed  CAS  Google Scholar 

  24. • Kondo K, Morino K, Nishio Y, Ishikado A, Arima H, Nakao K, et al. Fiber-rich diet with brown rice improves endothelial function in type 2 diabetes mellitus: a randomized controlled trial. PLoS One. 2017;12:e0179869. In this randomized clinical trial, a fiber-enriched diet containing brown rice 5.6 g/day improved significantly endothelial function compared to a fiber-enriched diet containing white rice 1.2 g/day.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. • Cosola C, De Angelis M, Rocchetti MT, Montemurno E, Maranzano V, Dalfino G, et al. Beta-glucans supplementation associates with reduction in P-cresyl sulfate levels and improved endothelial vascular reactivity in healthy individuals. PLoS One. 2017;12:e0169635. This interventional study showed that the daily administration of pasta enriched with barley beta-glucans (3 g/100 g) improved significantly endothelial reactivity in 26 healthy volunteers.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Tabesh F, Sanei H, Jahangiri M, Momenizadeh A, Tabesh E, Pourmohammadi K, et al. The effects of beta-glucan rich oat bread on serum nitric oxide and vascular endothelial function in patients with hypercholesterolemia. Biomed Res Int. 2014;2014:481904.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Momenizadeh A, Heidari R, Sadeghi M, Tabesh F, Ekramzadeh M, Haghighatian Z, et al. Effects of oat and wheat bread consumption on lipid profile, blood sugar, and endothelial function in hypercholesterolemic patients: a randomized controlled clinical trial. ARYA Atheroscler. 2014;10:259–65.

    PubMed  PubMed Central  Google Scholar 

  28. Thazhath SS, Wu T, Bound MJ, Checklin HL, Jones KL, Willoughby S, et al. Changes in meal composition and duration affect postprandial endothelial function in healthy humans. Am J Physiol Gastrointest Liver Physiol. 2014;307:G1191–7.

    Article  PubMed  CAS  Google Scholar 

  29. Pal S, Khossousi A, Binns C, Dhaliwal S, Radavelli-Bagatini S. The effects of 12-week psyllium fibre supplementation or healthy diet on blood pressure and arterial stiffness in overweight and obese individuals. Br J Nutr. 2012;107:725–34.

    Article  PubMed  CAS  Google Scholar 

  30. Yoshida M, Sawa J, Hozumi T, Mimoto H, Ishida Y, Kazumi T, et al. Effects of long-term high-fiber diet on macrovascular changes and lipid and glucose levels in STZ-induced diabetic SD rats. Diabetes Res Clin Pract. 1991;13:147–52.

    Article  PubMed  CAS  Google Scholar 

  31. • Aoki S, KojiKawata A, Muramatsu D, Uchiyama H, Okabe M, Ikesue M, et al. Oral administration of the β-glucan produced by Aureobasidium pullulans ameliorates development of atherosclerosis in apolipoprotein E deficient mice. J Funct Foods. 2015;18:22–7. In apolipoprotein E-deficient mice, the oral administration of Aureobasidium pullulans -produced β-glucan reduced blood levels of oxidized LDL cholesterol and vascular accumulation of macrophages.

    Article  CAS  Google Scholar 

  32. Wu H, Dwyer KM, Fan Z, Shircore A, Fan J, Dwyer JH. Dietary fiber and progression of atherosclerosis: the Los Angeles Atherosclerosis Study. Am J Clin Nutr. 2003;78:1085–91.

    Article  PubMed  CAS  Google Scholar 

  33. Cerda JJ, Normann SJ, Sullivan MP, Burgin CW, Robbins FL, Vathada S, et al. Inhibition of atherosclerosis by dietary pectin in microswine with sustained hypercholesterolemia. Circulation. 1994;89:1247–53.

    Article  PubMed  CAS  Google Scholar 

  34. Moreno Franco B, León Latre M, Andrés Esteban EM, Ordovás JM, Casasnovas JA, Peñalvo JL. Soluble and insoluble dietary fibre intake and risk factors for metabolic syndrome and cardiovascular disease in middle-aged adults: the AWHS cohort. Nutr Hosp. 2014;30:1279–88.

    PubMed  Google Scholar 

  35. • Lu L, Huang YF, Wang MQ, Chen DX, Wan H, Wei LB, et al. Dietary fiber intake is associated with chronic kidney disease (CKD) progression and cardiovascular risk, but not protein nutritional status, in adults with CKD. Asia Pac J Clin Nutr. 2017;26:598–605. In this prospective observational study, a high dietary fiber intake (>25g/day) was associated with a significant reduction of inflammation parameters and cardiovascular risk in patients with chronic kidney disease.

    PubMed  Google Scholar 

  36. • Buil-Cosiales P, Martinez-Gonzalez MA, Ruiz-Canela M, Díez-Espino J, García-Arellano A, Toledo E. Consumption of fruit or fiber-fruit decreases the risk of cardiovascular disease in a Mediterranean young cohort. Nutrients. 2017;9:295. In this observational prospective study, an inverse association between fiber intake and CV disease events was observed in a Mediterranean cohort of young adults.

  37. Erkkilä AT, Lichtenstein AH. Fiber and cardiovascular disease risk: how strong is the evidence? J Cardiovasc Nurs. 2006;21:3–8.

    Article  PubMed  Google Scholar 

  38. McRae MP. Dietary fiber is beneficial for the prevention of cardiovascular disease: an umbrella review of meta-analyses. J Chiropr Med. 2017;16:289–99.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Threapleton DE, Greenwood DC, Evans CE, Cleghorn CL, Nykjaer C, Woodhead C, et al. Dietary fibre intake and risk of cardiovascular disease: systematic review and meta-analysis. BMJ. 2013;347:f6879.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Gylling H, Simonen P. Are plant sterols and plant stanols a viable future treatment for dyslipidemia? Expert Rev Cardiovasc Ther. 2016;14:549–51.

    Article  PubMed  CAS  Google Scholar 

  41. Andersson SW, Skinner J, Ellegård L, Welch AA, Bingham S, Mulligan A, et al. Intake of dietary plant sterols is inversely related to serum cholesterol concentration in men and women in the EPIC Norfolk population: a cross-sectional study. Eur J Clin Nutr. 2004;58:1378–85.

    Article  PubMed  CAS  Google Scholar 

  42. Mannarino E, Pirro M, Cortese C, Lupattelli G, Siepi D, Mezzetti A, et al. Effects of a phytosterol-enriched dairy product on lipids, sterols and 8-isoprostane in hypercholesterolemic patients: a multicenter Italian study. Nutr Metab Cardiovasc Dis. 2009;19:84–90.

    Article  PubMed  CAS  Google Scholar 

  43. Wu T, Fu J, Yang Y, Zhang L, Han J. The effects of phytosterols/stanols on blood lipid profiles: a systematic review with meta-analysis. Asia Pac J Clin Nutr. 2009;18:179–86.

    PubMed  CAS  Google Scholar 

  44. Athyros VG, Kakafika AI, Papageorgiou AA, Tziomalos K, Peletidou A, Vosikis C, et al. Effect of a plant stanol ester-containing spread, placebo spread, or Mediterranean diet on estimated cardiovascular risk and lipid, inflammatory and haemostatic factors. Nutr Metab Cardiovasc Dis. 2011;21:213–21.

    Article  PubMed  CAS  Google Scholar 

  45. Othman RA, Moghadasian MH. Beyond cholesterol-lowering effects of plant sterols: clinical and experimental evidence of anti-inflammatory properties. Nutr Rev. 2011;69:371–82.

    Article  PubMed  Google Scholar 

  46. • Ras RT, Fuchs D, Koppenol WP, Garczarek U, Greyling A, Keicher C, et al. The effect of a low-fat spread with added plant sterols on vascular function markers: results of the Investigating Vascular Function Effects of Plant Sterols (INVEST) study. Am J Clin Nutr. 2015;101:733–41. In this double-blind, randomized, placebo-controlled study, the oral intake of a low-fat spread with added plant sterols did not improve endothelial function in hypercholesterolemic patients.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Gylling H, Halonen J, Lindholm H, Konttinen J, Simonen P, Nissinen MJ, et al. The effects of plant stanol ester consumption on arterial stiffness and endothelial function in adults: a randomised controlled clinical trial. BMC Cardiovasc Disord. 2013;13:50.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Hallikainen M, Lyyra-Laitinen T, Laitinen T, Agren JJ, Pihlajamäki J, Rauramaa R, et al. Endothelial function in hypercholesterolemic subjects: effects of plant stanol and sterol esters. Atherosclerosis. 2006;188:425–32.

    Article  PubMed  CAS  Google Scholar 

  49. Kelly ER, Plat J, Mensink RP, Berendschot TT. Effects of long term plant sterol and -stanol consumption on the retinal vasculature: a randomized controlled trial in statin users. Atherosclerosis. 2011;214:225–30.

    Article  PubMed  CAS  Google Scholar 

  50. de Jongh S, Vissers MN, Rol P, Bakker HD, Kastelein JJ, Stroes ES. Plant sterols lower LDL cholesterol without improving endothelial function in prepubertal children with familial hypercholesterolaemia. J Inherit Metab Dis. 2003;26:343–51.

    Article  PubMed  Google Scholar 

  51. Horenstein RB, Mitchell BD, Post WS, Lütjohann D, von Bergmann K, Ryan KA, et al. The ABCG8 G574R variant, serum plant sterol levels, and cardiovascular disease risk in the Old Order Amish. Arterioscler Thromb Vasc Biol. 2013;33:413–9.

    Article  PubMed  CAS  Google Scholar 

  52. • Ras RT, van der Schouw YT, Trautwein EA, Sioen I, Dalmeijer GW, Zock PL, et al. Intake of phytosterols from natural sources and risk of cardiovascular disease in the European Prospective Investigation into Cancer and Nutrition-the Netherlands (EPIC-NL) population. Eur J Prev Cardiol. 2015;22:1067–75. In this observational prospective study enrolling 35,597 Dutch men and women, the oral intake of plant sterol was not associated with a significant reduction of CV disease risk.

    Article  PubMed  Google Scholar 

  53. Klingberg S, Ellegård L, Johansson I, Jansson JH, Hallmans G, Winkvist A. Dietary intake of naturally occurring plant sterols is related to a lower risk of a first myocardial infarction in men but not in women in northern Sweden. J Nutr. 2013;143:1630–5.

    Article  PubMed  CAS  Google Scholar 

  54. Gylling H, Plat J, Turley S, Ginsberg HN, Ellegård L, Jessup W, et al. Plant sterols and plant stanols in the management of dyslipidaemia and prevention of cardiovascular disease. Atherosclerosis. 2014;232:346–60.

    Article  PubMed  CAS  Google Scholar 

  55. Tsao R. Chemistry and biochemistry of dietary polyphenols. Nutrients. 2010;2:1231–46.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Baba S, Natsume M, Yasuda A, Nakamura Y, Tamura T, Osakabe N, et al. Plasma LDL and HDL cholesterol and oxidized LDL concentrations are altered in normo- and hypercholesterolemic humans after intake of different levels of cocoa powder. J Nutr. 2007;137:1436–41.

    Article  PubMed  CAS  Google Scholar 

  57. Xia EQ, Deng GF, Guo YJ, Li HB. Biological activities of polyphenols from grapes. Int J Mol Sci. 2010;11:622–46.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. McDougall GJ, Stewart D. The inhibitory effects of berry polyphenols on digestive enzymes. Biofactors. 2005;23:189–95.

    Article  PubMed  CAS  Google Scholar 

  59. Shishikura Y, Khokhar S, Murray BS. Effects of tea polyphenols on emulsification of olive oil in a small intestine model system. J Agric Food Chem. 2006;54:1906–13.

    Article  PubMed  CAS  Google Scholar 

  60. Babu PV, Liu D. Green tea catechins and cardiovascular health: an update. Curr Med Chem. 2008;15:1840–50.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. Onakpoya I, Spencer E, Heneghan C, Thompson M. The effect of green tea on blood pressure and lipid profile: a systematic review and meta-analysis of randomized clinical trials. Nutr Metab Cardiovasc Dis. 2014;24:823–36.

    Article  PubMed  CAS  Google Scholar 

  62. Park CS, Kim W, Woo JS, Ha SJ, Kang WY, Hwang SH, et al. Green tea consumption improves endothelial function but not circulating endothelial progenitor cells in patients with chronic renal failure. Int J Cardiol. 2010;145(2):261.

    Article  PubMed  Google Scholar 

  63. • Lin QF, Qiu CS, Wang SL, Huang LF, Chen ZY, Chen Y, et al. Cross-sectional study of the relationship between habitual tea consumption and arterial stiffness. J Am Coll Nutr. 2016;35:354–61. In this observational study, habitual tea consumption (> 10 g/day for more than 6 years) was associated with a significant improvement of arterial stiffness.

    Article  PubMed  CAS  Google Scholar 

  64. • Ding S, Jiang J, Yu P, Zhang G, Zhang G, Liu X. Green tea polyphenol treatment attenuates atherosclerosis in high-fat diet-fed apolipoprotein E-knockout mice via alleviating dyslipidemia and up-regulating autophagy. PLoS One. 2017;12:e0181666. In apolipoprotein E-deficient mice, green tea polyphenol supplementation reduced blood levels of oxidized LDL cholesterol and expression of autophagy markers in arterial wall.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. •• Zhang C, Qin YY, Wei X, Yu FF, Zhou YH, He J. Tea consumption and risk of cardiovascular outcomes and total mortality: a systematic review and meta-analysis of prospective observational studies. Eur J Epidemiol. 2015;30:103–13. In this meta-analysis of 22 prospective studies, an increase in tea consumption by 3 cups per day was associated with a significant reduction of CV risk.

    Article  PubMed  CAS  Google Scholar 

  66. Peters U, Poole C, Arab L. Does tea affect cardiovascular disease? A meta-analysis. Am J Epidemiol. 2001;154:495–503.

    Article  PubMed  CAS  Google Scholar 

  67. Grassi D, Necozione S, Lippi C, Croce G, Valeri L, Pasqualetti P, et al. Cocoa reduces blood pressure and insulin resistance and improves endothelium-dependent vasodilation in hypertensives. Hypertension. 2005;46:398–405.

    Article  PubMed  CAS  Google Scholar 

  68. • Grassi D, Desideri G, Necozione S, di Giosia P, Barnabei R, Allegaert L, et al. Cocoa consumption dose-dependently improves flow-mediated dilation and arterial stiffness decreasing blood pressure in healthy individuals. Hypertens. 2015;33:294–303. In this randomized, double-blind, cross-over study, the daily intake of 10 mg of cocoa was associated with a dose-dependent reduction of FMD.

    Article  CAS  Google Scholar 

  69. Recio-Rodríguez JI, Gómez-Marcos MA, Patino-Alonso MC, Agudo-Conde C, Rodríguez-Sánchez E, García-Ortiz L, et al. Cocoa intake and arterial stiffness in subjects with cardiovascular risk factors. Nutr J. 2012;11:8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. Kurosawa T, Itoh F, Nozaki A, Nakano Y, Katsuda S, Osakabe N, et al. Suppressive effect of cocoa powder on atherosclerosis in Kurosawa and Kusanagi-hypercholesterolemic rabbits. J Atheroscler Thromb. 2005;12:20–8.

    Article  PubMed  CAS  Google Scholar 

  71. Arranz S, Valderas-Martinez P, Chiva-Blanch G, Casas R, Urpi-Sarda M, Lamuela-Raventos RM, et al. Cardioprotective effects of cocoa: clinical evidence from randomized clinical intervention trials in humans. Mol Nutr Food Res. 2013;57:936–47.

    Article  PubMed  CAS  Google Scholar 

  72. Buijsse B, Feskens EJ, Kok FJ, Kromhout D. Cocoa intake, blood pressure, and cardiovascular mortality: the Zutphen Elderly Study. Arch Intern Med. 2006;166:411–7.

    PubMed  Google Scholar 

  73. Sahebkar A. Effects of resveratrol supplementation on plasma lipids: a systematic review and meta-analysis of randomized controlled trials. Nutr Rev. 2013;71:822–35.

    Article  PubMed  Google Scholar 

  74. Bonnefont-Rousselot D. Resveratrol and cardiovascular diseases. Nutrients. 2016;8:250.

  75. Bonechi C, Lamponi S, Donati A, Tamasi G, Consumi M, Leone G, et al. Effect of resveratrol on platelet aggregation by fibrinogen protection. Biophys Chem. 2017;222:41–8.

    Article  PubMed  CAS  Google Scholar 

  76. Wong RH, Berry NM, Coates AM, Buckley JD, Bryan J, Kunz I, et al. Chronic resveratrol consumption improves brachial flow-mediated dilatation in healthy obese adults. J Hypertens. 2013;31:1819–27.

    Article  PubMed  CAS  Google Scholar 

  77. • van der Made SM, Plat J, Mensink RP. Trans-resveratrol supplementation and endothelial function during the fasting and postprandial phase: a randomized placebo-controlled trial in overweight and slightly obese participants. Nutrients. 2017;9:596. In this interventional study, the oral intake of resveratrol 75 mg/bid did not improve endothelial function.

  78. • Imamura H, Yamaguchi T, Nagayama D, Saiki A, Shirai K, Tatsuno I. Resveratrol ameliorates arterial stiffness assessed by cardio-ankle vascular index in patients with type 2 diabetes mellitus. Int Heart J. 2017;58:577–83. In this study, a 12-week oral supplementation with resveratrol 100 mg improved arterial stiffness in patients with type 2 diabetes mellitus.

    Article  PubMed  Google Scholar 

  79. •• Sahebkar A, Serban C, Ursoniu S, Wong ND, Muntner P, Graham IM, et al. Lack of efficacy of resveratrol on C-reactive protein and selected cardiovascular risk factors—results from a systematic review and meta-analysis of randomized controlled trials. Int J Cardiol. 2015;189:47–55. This meta-analysis of 10 randomized clinical trials did not show any significant impact of resveratrol supplementation on plasma lipids, markers of systemic inflammation, and blood pressure.

    Article  PubMed  Google Scholar 

  80. •• Fogacci F, Tocci G, Presta V, Fratter A, Borghi C, Cicero AFG. Effect of resveratrol on blood pressure: a systematic review and meta-analysis of randomized, controlled, clinical trials. Crit Rev Food Sci Nutr. 2018;23:1–14. This meta-analysis of randomized clinical trials revealed a significant impact of oral supplementation with resveratrol at high daily dosage (≥ 300 mg/day) on blood pressure levels.

  81. Wang Z, Zou J, Cao K, Hsieh TC, Huang Y, Wu JM. Dealcoholized red wine containing known amounts of resveratrol suppresses atherosclerosis in hypercholesterolemic rabbits without affecting plasma lipid levels. Int J Mol Med. 2005;16:533–40.

    PubMed  CAS  Google Scholar 

  82. Wilson T, Knight TJ, Beitz DC, Lewis DS, Engen RL. Resveratrol promotes atherosclerosis in hypercholesterolemic rabbits. Life Sci. 1996;59:PL15–21.

    Article  PubMed  CAS  Google Scholar 

  83. Vidavalur R, Otani H, Singal PK, Maulik N. Significance of wine and resveratrol in cardiovascular disease: French paradox revisited. Exp Clin Cardiol. 2006;11:217–25.

    PubMed  PubMed Central  CAS  Google Scholar 

  84. Qin Y, Xia M, Ma J, Hao Y, Liu J, Mou H, et al. Anthocyanin supplementation improves serum LDL- and HDL-cholesterol concentrations associated with the inhibition of cholesteryl ester transfer protein in dyslipidemic subjects. Am J Clin Nutr. 2009;90:485–92.

    Article  PubMed  CAS  Google Scholar 

  85. Jennings A, Welch AA, Fairweather-Tait SJ, Kay C, Minihane AM, Chowienczyk P, et al. Higher anthocyanin intake is associated with lower arterial stiffness and central blood pressure in women. Am J Clin Nutr. 2012;96:781–8.

    Article  PubMed  CAS  Google Scholar 

  86. Zhu Y, Xia M, Yang Y, Liu F, Li Z, Hao Y, et al. Purified anthocyanin supplementation improves endothelial function via NO-cGMP activation in hypercholesterolemic individuals. Clin Chem. 2011;57:1524–33.

    Article  PubMed  CAS  Google Scholar 

  87. Mauray A, Felgines C, Morand C, Mazur A, Scalbert A, Milenkovic D. Bilberry anthocyanin-rich extract alters expression of genes related to atherosclerosis development in aorta of apo E-deficient mice. Nutr Metab Cardiovasc Dis. 2012;22:72–80.

    Article  PubMed  CAS  Google Scholar 

  88. •• Luís Â, Domingues F, Pereira L. Association between berries intake and cardiovascular diseases risk factors: a systematic review with meta-analysis and trial sequential analysis of randomized controlled trials. Food Funct. 2018;9:740–757. In this meta-analysis of randomized controlled trials, oral intake of berries reduced significantly plasma levels of LDL cholesterol.

  89. Hori G, Wang MF, Chan YC, Komatsu T, Wong Y, Chen TH, et al. Soy protein hydrolyzate with bound phospholipids reduces serum cholesterol levels in hypercholesterolemic adult male volunteers. Biosci Biotechnol Biochem. 2001;65:72–8.

    Article  PubMed  CAS  Google Scholar 

  90. Taku K, Umegaki K, Sato Y, Taki Y, Endoh K, Watanabe S. Soy isoflavones lower serum total and LDL cholesterol in humans: a meta-analysis of 11 randomized controlled trials. Am J Clin Nutr. 2007;85:1148–56.

    Article  PubMed  CAS  Google Scholar 

  91. Padhi EM, Blewett HJ, Duncan AM, Guzman RP, Hawke A, Seetharaman K, et al. Whole soy flour incorporated into a muffin and consumed at 2 doses of soy protein does not lower LDL cholesterol in a randomized, double-blind controlled trial of hypercholesterolemic adults. J Nutr. 2015;145:2665–74.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  92. Anderson JW, Johnstone BM, Cook-Newell ME. Meta-analysis of the effects of soy protein intake on serum lipids. N Engl J Med. 1995;333:276–82.

    Article  PubMed  CAS  Google Scholar 

  93. Harland JI, Haffner TA. Systematic review, meta-analysis and regression of randomised controlled trials reporting an association between an intake of circa 25 g soy a protein per day and blood cholesterol. Atherosclerosis. 2008;200:13–27.

    Article  PubMed  CAS  Google Scholar 

  94. •• Tokede OA, Onabanjo TA, Yansane A, Gaziano JM, Djoussé L. Soya products and serum lipids: a meta-analysis of randomised controlled trials. Br J Nutr. 2015;114:831–43. In this meta-analysis of randomized controlled trials, oral consumption of soy product was associated with a significant reduction in plasma LDL cholesterol levels.

    Article  PubMed  CAS  Google Scholar 

  95. Ramdath DD, Padhi EM, Sarfaraz S, Renwick S, Duncan AM. Beyond the cholesterol-lowering effect of soy protein: a review of the effects of dietary soy and its constituents on risk factors for cardiovascular disease. Nutrients. 2017;9

  96. Sakamoto Y, Kanatsu J, Toh M, Naka A, Kondo K, Iida K. The dietary isoflavone daidzein reduces expression of pro-inflammatory genes through PPARα/γ and JNK pathways in adipocyte and macrophage co-cultures. PLoS One. 2016;11:e0149676.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  97. Lesinski GB, Reville PK, Mace TA, Young GS, Ahn-Jarvis J, Thomas-Ahner J, et al. Consumption of soy isoflavone enriched bread in men with prostate cancer is associated with reduced proinflammatory cytokines and immunosuppressive cells. Cancer Prev Res (Phila). 2015;8:1036–44.

    Article  PubMed Central  CAS  Google Scholar 

  98. Garrido A, De la Maza MP, Hirsch S, Valladares L. Soy isoflavones affect platelet thromboxane A2 receptor density but not plasma lipids in menopausal women. Maturitas. 2006;54:270–6.

    Article  PubMed  CAS  Google Scholar 

  99. Adams MR, Golden DL, Anthony MS, Register TC, Williams JK. The inhibitory effect of soy protein isolate on atherosclerosis in mice does not require the presence of LDL receptors or alteration of plasma lipoproteins. J Nutr. 2002;132:43–9.

    Article  PubMed  CAS  Google Scholar 

  100. Beavers DP, Beavers KM, Miller M, Stamey J, Messina MJ. Exposure to isoflavone-containing soy products and endothelial function: a Bayesian meta-analysis of randomized controlled trials. Nutr Metab Cardiovasc Dis. 2012;22:182–91.

    Article  PubMed  CAS  Google Scholar 

  101. Törmälä R, Appt S, Clarkson TB, Groop PH, Rönnback M, Ylikorkala O, et al. Equol production capability is associated with favorable vascular function in postmenopausal women using tibolone; no effect with soy supplementation. Atherosclerosis. 2008;198:174–8.

    Article  PubMed  CAS  Google Scholar 

  102. Clerici C, Setchell KD, Battezzati PM, Pirro M, Giuliano V, Asciutti S, et al. Pasta naturally enriched with isoflavone aglycons from soy germ reduces serum lipids and improves markers of cardiovascular risk. J Nutr. 2007;137:2270–8.

    Article  PubMed  CAS  Google Scholar 

  103. Liu ZM, Ho SC, Chen YM, Tomlinson B, Ho S, To K, et al. Effect of whole soy and purified daidzein on ambulatory blood pressure and endothelial function—a 6-month double-blind, randomized controlled trial among Chinese postmenopausal women with prehypertension. Eur J Clin Nutr. 2015;69:1161–8.

    Article  PubMed  CAS  Google Scholar 

  104. Richter CK, Skulas-Ray AC, Fleming JA, Link CJ, Mukherjea R, Krul ES, et al. Effects of isoflavone-containing soya protein on ex vivo cholesterol efflux, vascular function and blood markers of CVD risk in adults with moderately elevated blood pressure: a dose-response randomised controlled trial. Br J Nutr. 2017;117:1403–13.

    Article  PubMed  CAS  Google Scholar 

  105. Cuevas AM, Irribarra VL, Castillo OA, Yañez MD, Germain AM. Isolated soy protein improves endothelial function in postmenopausal hypercholesterolemic women. Eur J Clin Nutr. 2003;57:889–94.

    Article  PubMed  CAS  Google Scholar 

  106. Reverri EJ, LaSalle CD, Franke AA, Steinberg FM. Soy provides modest benefits on endothelial function without affecting inflammatory biomarkers in adults at cardiometabolic risk. Mol Nutr Food Res. 2015;59:323–33.

    Article  PubMed  CAS  Google Scholar 

  107. Clerici C, Nardi E, Battezzati PM, Asciutti S, Castellani D, Corazzi N, et al. Novel soy germ pasta improves endothelial function, blood pressure, and oxidative stress in patients with type 2 diabetes. Diabetes Care. 2011;34:1946–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  108. Teede HJ, McGrath BP, DeSilva L, Cehun M, Fassoulakis A, Nestel PJ. Isoflavones reduce arterial stiffness: a placebo-controlled study in men and postmenopausal women. Arterioscler Thromb Vasc Biol. 2003;23:1066–71.

    Article  PubMed  CAS  Google Scholar 

  109. van Nielen M, Feskens EJ, Rietman A, Siebelink E, Mensink M. Partly replacing meat protein with soy protein alters insulin resistance and blood lipids in postmenopausal women with abdominal obesity. J Nutr. 2014;144(9):1423.

    Article  PubMed  CAS  Google Scholar 

  110. Nestel PJ, Yamashita T, Sasahara T, Pomeroy S, Dart A, Komesaroff P, et al. Soy isoflavones improve systemic arterial compliance but not plasma lipids in menopausal and perimenopausal women. Arterioscler Thromb Vasc Biol. 1997;17:3392–8.

    Article  PubMed  CAS  Google Scholar 

  111. Teede H, Dalais F, Kotsopoulos D, Liang YL, Davis S, Mc Grath B. Dietary soy has both beneficial and potentially adverse cardiovascular effects: a placebo-controlled study in men and postmenopausal women. J Clin Endocrinol Metab. 2001;86:3053–60.

    PubMed  CAS  Google Scholar 

  112. Meléndez GC, Register TC, Appt SE, Clarkson TB, Franke AA, Kaplan JR. Beneficial effects of soy supplementation on postmenopausal atherosclerosis are dependent on pretreatment stage of plaque progression. Menopause. 2015;22:289–96.

    Article  PubMed  PubMed Central  Google Scholar 

  113. Hodis HN, Mack WJ, Kono N, Azen SP, Shoupe D, Hwang-Levine J, et al. Isoflavone soy protein supplementation and atherosclerosis progression in healthy postmenopausal women: a randomized controlled trial. Stroke. 2011;42:3168–75.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  114. Liu J, Sun LL, He LP, Ling WH, Liu ZM, Chen YM. Soy food consumption, cardiometabolic alterations and carotid intima-media thickness in Chinese adults. Nutr Metab Cardiovasc Dis. 2014;24:1097–104.

    Article  PubMed  CAS  Google Scholar 

  115. Zhang B, Chen YM, Huang LL, Zhou XX, Chen CG, Ye YB, et al. Greater habitual soyfood consumption is associated with decreased carotid intima-media thickness and better plasma lipids in Chinese middle-aged adults. Atherosclerosis. 2008;198:403–11.

    Article  PubMed  CAS  Google Scholar 

  116. Shimazu T, Kuriyama S, Hozawa A, Ohmori K, Sato Y, Nakaya N, et al. Dietary patterns and cardiovascular disease mortality in Japan: a prospective cohort study. Int J Epidemiol. 2007;36:600–9.

    Article  PubMed  Google Scholar 

  117. Liu ZM, Ho SC, Chen YM, Ho S, To K, Tomlinson B, et al. Whole soy, but not purified daidzein, had a favorable effect on improvement of cardiovascular risks: a 6-month randomized, double-blind, and placebo-controlled trial in equol-producing postmenopausal women. Mol Nutr Food Res. 2014;58:709–17.

    Article  PubMed  CAS  Google Scholar 

  118. Nagata C, Wada K, Tamura T, Konishi K, Goto Y, Koda S, et al. Dietary soy and natto intake and cardiovascular disease mortality in Japanese adults: the Takayama study. Am J Clin Nutr. 2017;105:426–31.

    Article  PubMed  CAS  Google Scholar 

  119. •• Yan Z, Zhang X, Li C, Jiao S, Dong W. Association between consumption of soy and risk of cardiovascular disease: a meta-analysis of observational studies. Eur J Prev Cardiol. 2017;24:735–47. In this meta-analysis of observational studies, a significant negative association between soy consumption and cardiovascular risk was found.

    Article  PubMed  Google Scholar 

  120. •• Lou D, Li Y, Yan G, Bu J, Wang H. Soy consumption with risk of coronary heart disease and stroke: a meta-analysis of observational studies. Neuroepidemiology. 2016;46:242–52. In this meta-analysis of observational studies, no significant association between soy isoflavone intake and the risk of stroke and coronary heart disease was found.

    Article  PubMed  Google Scholar 

  121. Liu J, Zhang J, Shi Y, Grimsgaard S, Alraek T, Fønnebø V. Chinese red yeast rice (Monascus purpureus) for primary hyperlipidemia: a meta-analysis of randomized controlled trials. Chin Med. 2006;1:4.

    Article  PubMed  PubMed Central  Google Scholar 

  122. Li Y, Jiang L, Jia Z, Xin W, Yang S, Yang Q, et al. A meta-analysis of red yeast rice: an effective and relatively safe alternative approach for dyslipidemia. PLoS One. 2014;9:e98611.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  123. Gerards MC, Terlou RJ, Yu H, Koks CH, Gerdes VE. Traditional Chinese lipid-lowering agent red yeast rice results in significant LDL reduction but safety is uncertain—a systematic review and meta-analysis. Atherosclerosis. 2015;240:415–23.

    Article  PubMed  CAS  Google Scholar 

  124. Xiong X, Wang P, Li X, Zhang Y, Li S. The effects of red yeast rice dietary supplement on blood pressure, lipid profile, and C-reactive protein in hypertension: a systematic review. Crit Rev Food Sci Nutr. 2017;57:1831–51.

    Article  PubMed  CAS  Google Scholar 

  125. Xu B, Cheng W, Lu X. The effect of Xuezhikang on oxidation of low-density lipoproteins in vitro. Zhonghua Nei Ke Za Zhi. 1999;38:520–2.

    PubMed  CAS  Google Scholar 

  126. Liu L, Zhao SP, Cheng YC, Li YL. Xuezhikang decreases serum lipoprotein(a) and C-reactive protein concentrations in patients with coronary heart disease. Clin Chem. 2003;49:1347–52.

    Article  PubMed  Google Scholar 

  127. Lin CP, Chen YH, Chen JW, Leu HB, Liu TZ, Liu PL, et al. Cholestin (Monascus purpureus rice) inhibits homocysteine-induced reactive oxygen species generation, nuclear factor-kappaB activation, and vascular cell adhesion molecule-1 expression in human aortic endothelial cells. J Biomed Sci. 2008;15:183–96.

    Article  PubMed  CAS  Google Scholar 

  128. Hsieh YL, Yeh YH, Lee YT, Huang CY. Protective effects of cholestin on ethanol induced oxidative stress in rats. J Sci Food Agric. 2015;95:799–808.

    Article  PubMed  CAS  Google Scholar 

  129. Lin CP, Lin YL, Huang PH, Tsai HS, Chen YH. Inhibition of endothelial adhesion molecule expression by Monascus purpureus-fermented rice metabolites, monacolin K, ankaflavin, and monascin. J Sci Food Agric. 2011;91:1751–8.

    Article  PubMed  CAS  Google Scholar 

  130. Zhu XY, Li P, Yang YB, Liu ML. Xuezhikang, extract of red yeast rice, improved abnormal hemorheology, suppressed caveolin-1 and increased eNOS expression in atherosclerotic rats. PLoS One. 2013;8:e62731.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  131. Li P, Yang Y, Liu M. Xuezhikang, extract of red yeast rice, inhibited tissue factor and hypercoagulable state through suppressing nicotinamide adenine dinucleotide phosphate oxidase and extracellular signal-regulated kinase activation. J Cardiovasc Pharmacol. 2011;58:307–18.

    Article  PubMed  CAS  Google Scholar 

  132. Cicero AF, Derosa G, Parini A, Maffioli P, D'Addato S, Reggi A, et al. Red yeast rice improves lipid pattern, high-sensitivity C-reactive protein, and vascular remodeling parameters in moderately hypercholesterolemic Italian subjects. Nutr Res. 2013;33(8):622.

    Article  PubMed  CAS  Google Scholar 

  133. Zhao SP, Liu L, Cheng YC, Shishehbor MH, Liu MH, Peng DQ, et al. Xuezhikang, an extract of cholestin, protects endothelial function through antiinflammatory and lipid-lowering mechanisms in patients with coronary heart disease. Circulation. 2004;110:915–20.

    Article  PubMed  Google Scholar 

  134. • Zheng J, Xiao T, Ye P, Miao D, WH. Xuezhikang reduced arterial stiffness in patients with essential hypertension: a preliminary study. Braz J Med Biol Res. 2017:50–e6363. In this randomized controlled trial, oral supplementation with xuezhikang 1200 mg/day improved arterial stiffness in hypertensive patients.

  135. • Shen L, Sun Z, Chu S, Cai Z, Nie P, Wu C, et al. Xuezhikang, an extract from red yeast rice, attenuates vulnerable plaque progression by suppressing endoplasmic reticulum stress-mediated apoptosis and inflammation. PLoS One. 2017;12:e0188841. In apolipoprotein E-deficient mice, xuezhikang administration reduced carotid vulnerable plaque progression and rupture.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  136. • Wu M, Zhang WG, Liu LT. Red yeast rice prevents atherosclerosis through regulating inflammatory signaling pathways. Chin J Integr Med. 2017;23:689–95. In apolipoprotein E-deficient mice, red yeast rice treatment reduced plasma levels of different markers of systemic inflammation and decreased the expression of matrix metalloproteinase-9 in aortic wall.

    Article  PubMed  CAS  Google Scholar 

  137. Xie X, Wang Y, Zhang S, Zhang G, Xu Y, Bi H, et al. Chinese red yeast rice attenuates the development of angiotensin II-induced abdominal aortic aneurysm and atherosclerosis. J Nutr Biochem. 2012;23:549–56.

    Article  PubMed  CAS  Google Scholar 

  138. Lu Z, Kou W, Du B, Wu Y, Zhao S, Brusco OA, et al. Effect of Xuezhikang, an extract from red yeast Chinese rice, on coronary events in a Chinese population with previous myocardial infarction. Am J Cardiol. 2008;101:1689–93.

    Article  PubMed  Google Scholar 

  139. Kong W, Wei J, Abidi P, Lin M, Inaba S, Li C, et al. Berberine is a novel cholesterol-lowering drug working through a unique mechanism distinct from statins. Nat Med. 2004;10:1344–51.

    Article  PubMed  CAS  Google Scholar 

  140. Dong H, Zhao Y, Zhao L, Lu F. The effects of berberine on blood lipids: a systemic review and meta-analysis of randomized controlled trials. Planta Med. 2013;79:437–46.

    Article  PubMed  CAS  Google Scholar 

  141. Lan J, Zhao Y, Dong F, Yan Z, Zheng W, Fan J, et al. Meta-analysis of the effect and safety of berberine in the treatment of type 2 diabetes mellitus, hyperlipemia and hypertension. J Ethnopharmacol. 2015;161:69–81.

    Article  PubMed  CAS  Google Scholar 

  142. Dong H, Wang N, Zhao L, Lu F. Berberine in the treatment of type 2 diabetes mellitus: a systemic review and meta-analysis. Evid Based Complement Alternat Med. 2012;2012:591654.

    Article  PubMed  PubMed Central  Google Scholar 

  143. Qiang X, Xu L, Zhang M, Zhang P, Wang Y, Wang Y, et al. Demethyleneberberine attenuates non-alcoholic fatty liver disease with activation of AMPK and inhibition of oxidative stress. Biochem Biophys Res Commun. 2016;472:603–9.

    Article  PubMed  CAS  Google Scholar 

  144. Li Z, Geng YN, Jiang JD, Kong WJ. Antioxidant and anti-inflammatory activities of berberine in the treatment of diabetes mellitus. Evid Based Complement Alternat Med. 2014;2014:289264.

    PubMed  PubMed Central  Google Scholar 

  145. Meng S, Wang LS, Huang ZQ, Zhou Q, Sun YG, Cao JT, et al. Berberine ameliorates inflammation in patients with acute coronary syndrome following percutaneous coronary intervention. Clin Exp Pharmacol Physiol. 2012;39:406–11.

    Article  PubMed  CAS  Google Scholar 

  146. Pirillo A, Catapano AL. Berberine, a plant alkaloid with lipid- and glucose-lowering properties: from in vitro evidence to clinical studies. Atherosclerosis. 2015;243:449–61.

    Article  PubMed  CAS  Google Scholar 

  147. Ma YG, Liang L, Zhang YB, Wang BF, Bai YG, Dai ZJ, et al. Berberine reduced blood pressure and improved vasodilation in diabetic rats. J Mol Endocrinol. 2017;59:191–204.

    Article  PubMed  CAS  Google Scholar 

  148. Wang J, Guo T, Peng QS, Yue SW, Wang SX. Berberine via suppression of transient receptor potential vanilloid 4 channel improves vascular stiffness in mice. J Cell Mol Med. 2015;19:2607–16.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  149. Caliceti C, Rizzo P, Ferrari R, Fortini F, Aquila G, Leoncini E, et al. Novel role of the nutraceutical bioactive compound berberine in lectin-like OxLDL receptor 1-mediated endothelial dysfunction in comparison to lovastatin. Nutr Metab Cardiovasc Dis. 2017;27:552–63.

    Article  PubMed  CAS  Google Scholar 

  150. Xu MG, Wang JM, Chen L, Wang Y, Yang Z, Tao J. Berberine-induced mobilization of circulating endothelial progenitor cells improves human small artery elasticity. J Hum Hypertens. 2008;22:389–93.

    Article  PubMed  CAS  Google Scholar 

  151. Cheng F, Wang Y, Li J, Su C, Wu F, Xia WH, et al. Berberine improves endothelial function by reducing endothelial microparticles-mediated oxidative stress in humans. Int J Cardiol. 2013;167:936–42.

    Article  PubMed  Google Scholar 

  152. Li K, Yao W, Zheng X, Liao K. Berberine promotes the development of atherosclerosis and foam cell formation by inducing scavenger receptor A expression in macrophage. Cell Res. 2009;19:1006–17.

    Article  PubMed  CAS  Google Scholar 

  153. Wan Q, Liu Z, Yang Y, Cui X. Suppressive effects of berberine on atherosclerosis via downregulating visfatin expression and attenuating visfatin-induced endothelial dysfunction. Int J Mol Med. 2018;

  154. • Feng M, Zou Z, Zhou X, Hu Y, Ma H, Xiao Y, et al. Comparative effect of berberine and its derivative 8-cetylberberine on attenuating atherosclerosis in ApoE-/- mice. Int Immunopharmacol. 2017;43:195–202. In apolipoprotein E-deficient mice, a 12-week oral supplementation with either berberine or 8-cetylberberine reduced the atherosclerotic plaque area of the aorta.

    Article  PubMed  CAS  Google Scholar 

  155. Li Y, Wang P, Chai MJ, Yang F, Li HS, Zhao J, et al. Effects of berberine on serum inflammatory factors and carotid atherosclerotic plaques in patients with acute cerebral ischemic stroke. Zhongguo Zhong Yao Za Zhi. 2016;41:4066–71.

    PubMed  Google Scholar 

  156. Yang YS, Su YF, Yang HW, Lee YH, Chou JI, Ueng KC. Lipid-lowering effects of curcumin in patients with metabolic syndrome: a randomized, double-blind, placebo-controlled trial. Phytother Res. 2014;28:1770–7.

    Article  PubMed  CAS  Google Scholar 

  157. Panahi Y, Khalili N, Hosseini MS, Abbasinazari M, Sahebkar A. Lipid-modifying effects of adjunctive therapy with curcuminoids-piperine combination in patients with metabolic syndrome: results of a randomized controlled trial. Complement Ther Med. 2014;22:851–7.

    Article  PubMed  Google Scholar 

  158. Sahebkar A. A systematic review and meta-analysis of randomized controlled trials investigating the effects of curcumin on blood lipid levels. Clin Nutr. 2014;33:406–14.

    Article  PubMed  CAS  Google Scholar 

  159. •• Simental-Mendía LE, Pirro M, Gotto AM Jr, Banach M, Atkin SL, Majeed M, Sahebkar A. Lipid-modifying activity of curcuminoids: a systematic review and meta-analysis of randomized controlled trials. Crit Rev Food Sci Nutr. 2017;29(Nov):1–10. This meta-analysis of 20 randomized clinical trials enrolling 1427 patients showed that curcuminoid treatment did not reduce significantly plasma LDL cholesterol levels.

  160. Menon VP, Sudheer AR. Antioxidant and anti-inflammatory properties of curcumin. Adv Exp Med Biol. 2007;595:105–25.

    Article  PubMed  Google Scholar 

  161. Ghandadi M, Sahebkar A. Curcumin: an effective inhibitor of interleukin-6. Curr Pharm Des. 2017;23:921–31.

    Article  PubMed  CAS  Google Scholar 

  162. •• Sahebkar A, Cicero AFG, Simental-Mendía LE, Aggarwal BB, Gupta SC. Curcumin downregulates human tumor necrosis factor-α levels: a systematic review and meta-analysis of randomized controlled trials. Pharmacol Res. 2016;107:234–42. This meta-analysis of eight randomized clinical trials reported a significant curcumin-mediated reduction of circulating TNF-α concentration.

    Article  PubMed  CAS  Google Scholar 

  163. Sangartit W, Kukongviriyapan U, Donpunha W, Pakdeechote P, Kukongviriyapan V, Surawattanawan P, et al. Tetrahydrocurcumin protects against cadmium-induced hypertension, raised arterial stiffness and vascular remodeling in mice. PLoS One. 2014;9:e114908.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  164. Karimian MS, Pirro M, Johnston TP, Majeed M, Sahebkar A. Curcumin and endothelial function: evidence and mechanisms of protective effects. Curr Pharm Des. 2017;23:2462–73.

    Article  PubMed  CAS  Google Scholar 

  165. Campbell MS, Fleenor BS. The emerging role of curcumin for improving vascular dysfunction: a review. Crit Rev Food Sci Nutr 2017;29(Jun):1–10.

  166. • Santos-Parker JR, Strahler TR, Bassett CJ, Bispham NZ, Chonchol MB, Seals DR. Curcumin supplementation improves vascular endothelial function in healthy middle-aged and older adults by increasing nitric oxide bioavailability and reducing oxidative stress. Aging (Albany NY). 2017;9:187–208. In this interventional study, a 12-week oral supplementation with curcumin improved resistance artery endothelial function by increasing nitric oxide bioavailability and reducing oxidative stress.

    Article  CAS  Google Scholar 

  167. • Oliver JM, Stoner L, Rowlands DS, Caldwell AR, Sanders E, Kreutzer A, et al. Novel form of curcumin improves endothelial function in young, healthy individuals: a double-blind placebo controlled study. J Nutr Metab. 2016;2016:1089653. In this interventional study, oral supplementation with curcumin was associated with a dose-dependent improvement of endothelial function.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  168. Shin SK, Ha TY, McGregor RA, Choi MS. Long-term curcumin administration protects against atherosclerosis via hepatic regulation of lipoprotein cholesterol metabolism. Mol Nutr Food Res. 2011;55:1829–40.

    Article  PubMed  CAS  Google Scholar 

  169. • Zhang S, Zou J, Li P, Zheng X, Feng D. Curcumin protects against atherosclerosis in apolipoprotein e-knockout mice by inhibiting toll-like receptor 4 expression. J Agric Food Chem. 2018;66:449–56. In apolipoprotein E-deficient mice, curcumin reduced atherosclerosis progression through immunomodulatory effects.

    Article  PubMed  CAS  Google Scholar 

  170. Momtazi AA, Shahabipour F, Khatibi S, Johnston TP, Pirro M, Sahebkar A. Curcumin as a microRNA regulator in cancer: a review. Rev Physiol Biochem Pharmacol. 2016;171:1–38.

    Article  PubMed  CAS  Google Scholar 

  171. Bianconi V, Sahebkar A, Atkin SL, Pirro M. The regulation and importance of monocyte chemoattractant protein-1. Curr Opin Hematol. 2018;25:44–51.

    Article  PubMed  CAS  Google Scholar 

  172. Ganjali S, Blesso CN, Banach M, Pirro M, Majeed M, Sahebkar A. Effects of curcumin on HDL functionality. Pharmacol Res. 2017;119:208–18.

    Article  PubMed  CAS  Google Scholar 

  173. Chung LY. The antioxidant properties of garlic compounds: allyl cysteine, alliin, allicin, and allyl disulfide. J Med Food. 2006;9:205–13.

    Article  PubMed  CAS  Google Scholar 

  174. Mikaili P, Maadirad S, Moloudizargari M, Aghajanshakeri S, Sarahroodi S. Therapeutic uses and pharmacological properties of garlic, shallot, and their biologically active compounds. Iran J Basic Med Sci. 2013;16:1031–48.

    PubMed  PubMed Central  CAS  Google Scholar 

  175. Lau KK, Chan YH, Wong YK, Teo KC, Yiu KH, Liu S, et al. Garlic intake is an independent predictor of endothelial function in patients with ischemic stroke. J Nutr Health Aging. 2013;17:600–4.

    Article  PubMed  CAS  Google Scholar 

  176. • Mahdavi-Roshan M, Mirmiran P, Arjmand M, Nasrollahzadeh J. Effects of garlic on brachial endothelial function and capacity of plasma to mediate cholesterol efflux in patients with coronary artery disease. Anatol J Cardiol. 2017;18:116–21. In this randomized, placebo-controlled trial, oral supplementation with aged garlic extract improved endothelial function and reduced hs-CRP levels.

    PubMed  PubMed Central  Google Scholar 

  177. • Atkin M, Laight D, Cummings MH. The effects of garlic extract upon endothelial function, vascular inflammation, oxidative stress and insulin resistance in adults with type 2 diabetes at high cardiovascular risk. A pilot double blind randomized placebo controlled trial. J Diabet Complications. 2016;30:723–7. In this double-blind, placebo controlled, crossover study, oral supplementation with aged garlic extract did not significantly improve endothelial function.

    Article  Google Scholar 

  178. Turner B, Mølgaard C, Marckmann P. Effect of garlic (Allium sativum) powder tablets on serum lipids, blood pressure and arterial stiffness in normo-lipidaemic volunteers: a randomised, double-blind, placebo-controlled trial. Br J Nutr. 2004;92:701–6.

    Article  PubMed  CAS  Google Scholar 

  179. • Ried K, Travica N, Sali A. The effect of aged garlic extract on blood pressure and other cardiovascular risk factors in uncontrolled hypertensives: the AGE at Heart trial. Integr Blood Press Control. 2016;9:9–21. In this double-blind, randomized, placebo-controlled trial, oral supplementation with aged garlic extract improved arterial stiffness and markers of systemic inflammation.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  180. Xiong XJ, Wang PQ, Li SJ, Li XK, Zhang YQ, Wang J. Garlic for hypertension: a systematic review and meta-analysis of randomized controlled trials. Phytomedicine. 2015;22:352–61.

    Article  PubMed  CAS  Google Scholar 

  181. Budoff M. Aged garlic extract retards progression of coronary artery calcification. J Nutr. 2006;136:741S–4S.

    Article  PubMed  CAS  Google Scholar 

  182. • Matsumoto S, Nakanishi R, Li D, Alani A, Rezaeian P, Prabhu S, et al. Aged garlic extract reduces low attenuation plaque in coronary arteries of patients with metabolic syndrome in a prospective randomized double-blind study. J Nutr. 2016;146:427S–32S. In this interventional study, oral supplementation with aged garlic extract reduced low-attenuation plaque in coronary arteries of patients with metabolic syndrome.

    Article  PubMed  CAS  Google Scholar 

  183. Karagodin VP, Sobenin IA, Orekhov AN. Antiatherosclerotic and cardioprotective effects of time-released garlic powder pills. Curr Pharm Des. 2016;22:196–213.

    Article  PubMed  CAS  Google Scholar 

  184. •• Sahebkar A, Pirro M, Banach M, Mikhailidis DP, Atkin SL, Cicero AFG. Lipid-lowering activity of artichoke extracts: a systematic review and meta-analysis. Crit Rev Food Sci Nutr. 2017;13:1–8. In this meta-analysis of nine randomized clinical trials, enrolling 702 subjects, oral supplementation with artichoke extract was associated with a significant reduction of plasma LDL cholesterol and triglyceride levels.

    Article  CAS  Google Scholar 

  185. Pérez-García F, Adzet T, Cañigueral S. Activity of artichoke leaf extract on reactive oxygen species in human leukocytes. Free Radic Res. 2000;33(5):661.

    Article  PubMed  Google Scholar 

  186. Lupattelli G, Marchesi S, Lombardini R, Roscini AR, Trinca F, Gemelli F, et al. Artichoke juice improves endothelial function in hyperlipemia. Life Sci. 2004;76:775–82.

    Article  PubMed  CAS  Google Scholar 

  187. Rossoni G, Grande S, Galli C, Visioli F. Wild artichoke prevents the age-associated loss of vasomotor function. J Agric Food Chem. 2005;53:10291–6.

    Article  PubMed  CAS  Google Scholar 

  188. •• Toth PP, Patti AM, Nikolic D, Giglio RV, Castellino G, Biancucci T, et al. Bergamot reduces plasma lipids, atherogenic small dense LDL, and subclinical atherosclerosis in subjects with moderate hypercholesterolemia: a 6 months prospective study. Front Pharmacol. 2015;6:29. This is the first interventional study investigating the effects of oral supplementation with bergamot flavonoids on lipids and subclinical atherosclerosis.

    Google Scholar 

  189. Risitano R, Currò M, Cirmi S, Ferlazzo N, Campiglia P, Caccamo D, et al. Flavonoid fraction of bergamot juice reduces LPS-induced inflammatory response through SIRT1-mediated NF-κB inhibition in THP-1 monocytes. PLoS One. 2014;9:e107431.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  190. •• Jolfaie NR, Rouhani MH, Surkan PJ, Siassi F, Azadbakht L. Rice bran oil decreases total and LDL cholesterol in humans: a systematic review and meta-analysis of randomized controlled clinical trials. Horm Metab Res. 2016;48:417–26. In this meta-analysis of 11 randomized clinical trials, rice bran oil consumption resulted in a significant reduction of LDL cholesterol levels.

    Article  PubMed  CAS  Google Scholar 

  191. Cicero AF, Gaddi A. Rice bran oil and gamma-oryzanol in the treatment of hyperlipoproteinaemias and other conditions. Phytother Res. 2001;15:277–89.

    Article  PubMed  CAS  Google Scholar 

  192. Sakai S, Murata T, Tsubosaka Y, Ushio H, Hori M, Ozaki H. γ-Oryzanol reduces adhesion molecule expression in vascular endothelial cells via suppression of nuclear factor-κB activation. J Agric Food Chem. 2012;60:3367–72.

    Article  PubMed  CAS  Google Scholar 

  193. Rong N, Ausman LM, Nicolosi RJ. Oryzanol decreases cholesterol absorption and aortic fatty streaks in hamsters. Lipids. 1997;32:303–9.

    Article  PubMed  CAS  Google Scholar 

  194. Hiramatsu K, Tani T, Kimura Y, Izumi S, Nakane PK. Effect of gamma-oryzanol on atheroma formation in hypercholesterolemic rabbits. Tokai J Exp Clin Med. 1990;15:299–305.

    PubMed  CAS  Google Scholar 

  195. Cheong SH, Kim MY, Sok DE, Hwang SY, Kim JH, Kim HR, et al. Spirulina prevents atherosclerosis by reducing hypercholesterolemia in rabbits fed a high-cholesterol diet. J Nutr Sci Vitaminol (Tokyo). 2010;56:34–40.

    Article  CAS  Google Scholar 

  196. • Szulinska M, Gibas-Dorna M, Miller-Kasprzak E, Suliburska J, Miczke A, Walczak-Gałezewska M, et al. Spirulina maxima improves insulin sensitivity, lipid profile, and total antioxidant status in obese patients with well-treated hypertension: a randomized double-blind placebo-controlled study. Eur Rev Med Pharmacol Sci. 2017;21:2473–81. In this randomized clinical trial, oral supplementation with spirulina 2 g reduced significantly body mass index, plasma LDL cholesterol levels, and interleukin-6 concentrations and improved significantly insulin sensitivity.

    PubMed  CAS  Google Scholar 

  197. • Miczke A, Szulińska M, Hansdorfer-Korzon R, Kręgielska-Narożna M, Suliburska J, Walkowiak J, et al. Effects of spirulina consumption on body weight, blood pressure, and endothelial function in overweight hypertensive Caucasians: a double-blind, placebo-controlled, randomized trial. Eur Rev Med Pharmacol Sci. 2016;20:150–6. In this randomized clinical trial, spirulina 2 g/day improved body mass index, blood pressure, and endothelial function in overweight hypertensive patients.

    PubMed  CAS  Google Scholar 

  198. •• Derakhshande-Rishehri SM, Mansourian M, Kelishadi R, Heidari-Beni M. Association of foods enriched in conjugated linoleic acid (CLA) and CLA supplements with lipid profile in human studies: a systematic review and meta-analysis. Public Health Nutr. 2015;18:2041–54. This meta-analysis showed that oral supplementation with conjugated linoleic acid reduced significantly LDL cholesterol levels.

    Article  PubMed  Google Scholar 

  199. Taylor JS, Williams SR, Rhys R, James P, Frenneaux MP. Conjugated linoleic acid impairs endothelial function. Arterioscler Thromb Vasc Biol. 2006;26:307–12.

    Article  PubMed  CAS  Google Scholar 

  200. Sluijs I, Plantinga Y, de Roos B, Mennen LI, Bots ML. Dietary supplementation with cis-9,trans-11 conjugated linoleic acid and aortic stiffness in overweight and obese adults. Am J Clin Nutr. 2010;91:175–83.

    Article  PubMed  CAS  Google Scholar 

  201. Lee KN, Kritchevsky D, Pariza MW. Conjugated linoleic acid and atherosclerosis in rabbits. Atherosclerosis. 1994;108:19–25.

    Article  PubMed  CAS  Google Scholar 

  202. Raff M, Tholstrup T, Sejrsen K, Straarup EM, Wiinberg N. Diets rich in conjugated linoleic acid and vaccenic acid have no effect on blood pressure and isobaric arterial elasticity in healthy young men. J Nutr. 2006;136:992–7.

    Article  PubMed  CAS  Google Scholar 

  203. Pfeuffer M, Fielitz K, Laue C, Winkler P, Rubin D, Helwig U, et al. CLA does not impair endothelial function and decreases body weight as compared with safflower oil in overweight and obese male subjects. J Am Coll Nutr. 2011;30:19–28.

    Article  PubMed  CAS  Google Scholar 

  204. • Bähr M, Fechner A, Kiehntopf M, Jahreis G. Consuming a mixed diet enriched with lupin protein beneficially affects plasma lipids in hypercholesterolemic subjects: a randomized controlled trial. Clin Nutr. 2015;34:7–14. In this crossover study, the dietary supplementation with 25 g/day of lupin protein reduced significantly plasma levels of total, LDL, and HDL cholesterol, triglycerides, and uric acid.

    Article  PubMed  CAS  Google Scholar 

  205. Marchesi M, Parolini C, Diani E, Rigamonti E, Cornelli L, Arnoldi A, et al. Hypolipidaemic and anti-atherosclerotic effects of lupin proteins in a rabbit model. Br J Nutr. 2008;100:707–10.

    Article  PubMed  CAS  Google Scholar 

  206. Pilvi TK, Jauhiainen T, Cheng ZJ, Mervaala EM, Vapaatalo H, Korpela R. Lupin protein attenuates the development of hypertension and normalises the vascular function of NaCl-loaded Goto-Kakizaki rats. J Physiol Pharmacol. 2006;57:167–76.

    PubMed  CAS  Google Scholar 

  207. •• Pirro M, Mannarino MR, Bianconi V, Simental-Mendía LE, Bagaglia F, Mannarino E, et al. The effects of a nutraceutical combination on plasma lipids and glucose: a systematic review and meta-analysis of randomized controlled trials. Pharmacol Res. 2016;110:76–88. In this meta-analysis of 14 randomized clinical trials enrolling 1670 patients, oral supplementation with a nutraceutical combination containing red yeast rice, berberine, policosanol, astaxanthin, coenzyme Q10, and folic acid was associated with a significant reduction of plasma levels of total cholesterol, LDL cholesterol, HDL cholesterol, triglycerides, and glucose; the improvement of lipid profile was not associated with the duration of supplementation nor with the baseline lipid levels.

    Article  PubMed  CAS  Google Scholar 

  208. • Spigoni V, Aldigeri R, Antonini M, Micheli MM, Fantuzzi F, Fratter A, Pellizzato M, Derlindati E, Zavaroni I, Bonadonna RC, Dei Cas A. Effects of a new nutraceutical formulation (berberine, red yeast rice and chitosan) on non-HDL cholesterol levels in individuals with dyslipidemia: results from a randomized, double blind, placebo-controlled study. Int J Mol Sci. 2017;18:1498. In this double-blind, placebo-controlled, randomized clinical trial, a nutraceutical combination containing berberine 200 mg, monacolin K 3 mg, chitosan 10 mg, and coenzyme Q 10 mg reduced significantly plasma non-HDL cholesterol, LDL cholesterol, and apolipoprotein B levels.

  209. • Cicero AFG, Fogacci F, Bove M, Veronesi M, Rizzo M, Giovannini M, et al. Short-term effects of a combined nutraceutical on lipid level, fatty liver biomarkers, hemodynamic parameters, and estimated cardiovascular disease risk: a double-blind, placebo-controlled randomized clinical trial. Adv Ther. 2017;34:1966–75. In this double-blind, placebo-controlled, randomized clinical trial, a nutraceutical combination containing red yeast rice (10 mg), phytosterols (800 mg), and L-tyrosol (5 mg) reduced significantly total cholesterol, LDL cholesterol, hepatic steatosis index, and systolic blood pressure and improved significantly endothelial reactivity and estimated 10-year cardiovascular risk score compared to placebo.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  210. Cicero AF, Colletti A, Rosticci M, Grandi E, Borghi C. Efficacy and tolerability of a combined lipid-lowering nutraceutical on cholesterolemia, hs-CRP level and endothelial function in moderately hypercholesterolemic subjects. J Biol Regul Homeost Agents. 2016;30:593–8.

    PubMed  CAS  Google Scholar 

  211. • Cicero AF, Morbini M, Rosticci M, D”Addato S, Grandi E, Borghi C. Middle-term dietary supplementation with red yeast rice plus coenzyme Q10 improves lipid pattern, endothelial reactivity and arterial stiffness in moderately hypercholesterolemic subjects. Ann Nutr Metab. 2016;68:213–9. In this double blind, placebo-controlled, randomized clinical trial, oral supplementation with monacolins 10 mg and coenzyme Q10 30 mg reduced significantly plasma LDL cholesterol levels and improved significantly endothelial reactivity and arterial stiffness compared to placebo.

    Article  PubMed  CAS  Google Scholar 

  212. • Pirro M, Mannarino MR, Ministrini S, Fallarino F, Lupattelli G, Bianconi V, et al. Effects of a nutraceutical combination on lipids, inflammation and endothelial integrity in patients with subclinical inflammation: a randomized clinical trial. Sci Rep. 2016;6:23587. In this randomized, open-label, interventional study, oral supplementation with a nutraceutical combination containing policosanol, red yeast rice, berberine, astaxanthin, folic acid, and coenzyme Q10 reduced significantly plasma total cholesterol, LDL cholesterol, and hs-CRP levels and circulating endothelial microparticle levels compared to no active treatment.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  213. • Cicero AF, Morbini M, Parini A, Urso R, Rosticci M, Grandi E, et al. Effect of red yeast rice combined with antioxidants on lipid pattern, hs-CRP level, and endothelial function in moderately hypercholesterolemic subjects. Ther Clin Risk Manag. 2016;12:281–6. In this crossover study, oral supplementation with monacolins 10 mg combined with anti-oxidants was followed by a greater percentage change in plasma total, LDL, and non-HDC cholesterol, hs-CRP, and endothelial function compared to placebo.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  214. • Trimarco V, Izzo R, Stabile E, Rozza F, Santoro M, Manzi MV, et al. Effects of a new combination of nutraceuticals with Morus alba on lipid profile, insulin sensitivity and endotelial function in dyslipidemic subjects. A cross-over, randomized, double-blind trial. High Blood Press Cardiovasc Prev. 2015;22:149–54. In this crossover study, a nutraceutical combination containing red yeast rice (monacolin K 3.3 mg), berberine 531.25 mg, and leaf extract of Morus alba reduced significantly plasma levels of triglycerides, total and LDL cholesterol, glycated hemoglobin, fasting glucose, insulin plasma levels, and HOMA index and increased significantly plasma HDL cholesterol levels; the impact on total and LDL cholesterol reduction was more pronounced than that of a nutraceutical combination containing policosanol, red yeast rice (monacolin K 3 mg), berberine 500 mg, astaxanthin, folic acid, and coenzyme Q10.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  215. Derosa G, Bonaventura A, Bianchi L, Romano D, D'Angelo A, Fogari E, et al. A randomized, placebo-controlled study on the effects of a nutraceutical combination of red yeast rice, silybum marianum and octasonol on lipid profile, endothelial and inflammatory parameters. J Biol Regul Homeost Agents. 2014;28:317–24.

    PubMed  CAS  Google Scholar 

  216. Affuso F, Ruvolo A, Micillo F, Saccà L, Fazio S. Effects of a nutraceutical combination (berberine, red yeast rice and policosanols) on lipid levels and endothelial function randomized, double-blind, placebo-controlled study. Nutr Metab Cardiovasc Dis. 2010;20:656–61.

    Article  PubMed  CAS  Google Scholar 

  217. Affuso F, Mercurio V, Ruvolo A, Pirozzi C, Micillo F, Carlomagno G, et al. A nutraceutical combination improve World J Cardiol s insulin sensitivity in patients with metabolic syndrome. 2012;4:77–83.

  218. Pirro M, Lupattelli G, Del Giorno R, Schillaci G, Berisha S, Mannarino MR, et al. Nutraceutical combination (red yeast rice, berberine and policosanols) improves aortic stiffness in low-moderate risk hypercholesterolemic patients. PharmaNutrition. 2013;1:73–7.

    Article  CAS  Google Scholar 

  219. Schillaci G, Pirro M, Ronti T, Gemelli F, Pucci G, Innocente S, et al. Prognostic impact of prolonged ventricular repolarization in hypertension. Arch Intern Med. 2006;166:909–13.

    Article  PubMed  Google Scholar 

  220. St-Pierre AC, Bergeron J, Pirro M, Cantin B, Dagenais GR, Després JP, et al. Effect of plasma C-reactive protein levels in modulating the risk of coronary heart disease associated with small, dense, low-density lipoproteins in men (The Quebec Cardiovascular Study). Am J Cardiol. 2003;91:555–8.

    Article  PubMed  CAS  Google Scholar 

  221. Cannon CP, Blazing MA, Giugliano RP, McCagg A, White JA, Theroux P, et al. Ezetimibe added to statin therapy after acute coronary syndromes. N Engl J Med. 2015;372:2387–97.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matteo Pirro.

Ethics declarations

Conflict of Interest

Vanessa Bianconi, Massimo Raffaele Mannarino, Amirhossein Sahebkar, Teresa Cosentino, and Matteo Pirro declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Lipid Abnormalities and Cardiovascular Prevention

Appendix

Appendix

Table 1 Clinical trials investigating the effects of single nutraceutical preparations on markers of vascular function and cardiovascular outcomes

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bianconi, V., Mannarino, M.R., Sahebkar, A. et al. Cholesterol-Lowering Nutraceuticals Affecting Vascular Function and Cardiovascular Disease Risk. Curr Cardiol Rep 20, 53 (2018). https://doi.org/10.1007/s11886-018-0994-7

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11886-018-0994-7

Keywords

Navigation

-