Skip to main content

Advertisement

Log in

Pseudogene product YqiG is important for pflB expression and biohydrogen production in Escherichia coli BW25113

  • Original Article
  • Published:
3 Biotech Aims and scope Submit manuscript

Abstract

Pseudogenes in the Escherichia coli genome are assumed to be non-functional. In this study, Keio collection BW25113∆yqiG and YqiG-producing strain (BW25113/pCA24N-YqiG) were used to evaluate the importance of pseudogene yqiG in hydrogen metabolism. Our results show pseudogene protein YqiG was identified as an essential protein in the production of biohydrogen from glucose. The mutant yqiG decreased biohydrogen production from 37 µmol mg−1 protein to 6 µmol mg−1 protein compared to the wild-type strain, and glucose consumption was reduced by 80%. Through transcriptional analysis, we found that the yqiG mutation represses pflB transcription tenfold; pflB encodes pyruvate-formate lyase, one of the key enzymes in the anaerobic metabolism of E. coli. Moreover, production of YqiG stimulated glycolysis and increased biohydrogen productivity 1.5-fold compared to that of the wild-type strain. Thus, YqiG is important for the central glycolysis reaction and is able to influence hydrogen metabolism activity in E. coli.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Baba T, Ara T, Hasegawa M, Takai Y, Okumura Y, Baba M, Datsenko KA, Tomita M, Wanner BL, Mori H (2006) Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection. Mol Syst Biol 2:2006–2008

    Article  Google Scholar 

  • Bagramyan K, Trchounian A (2003) Structural and functional features of formate hydrogen lyase, an enzyme of mixed-acid fermentation from Escherichia coli. Biochemistry 68:1159–1170

    CAS  PubMed  Google Scholar 

  • Balakirev ES, Ayala FJ (2003) Pseudogenes: are they “junk” or functional DNA? Annu Rev Genet 37:123–151

    Article  CAS  Google Scholar 

  • Barker CS, Pruss BM, Matsumura P (2004) Increased motility of Escherichia coli by insertion sequence element integration into the regulatory region of the flhD operon. J Bacteriol 186:7529–7537

    Article  CAS  Google Scholar 

  • Beyer L, Doberenz C, Falke D, Hunger D, Suppmann B, Sawers RG (2013) Coordination of FocA and pyruvate formate-lyase synthesis in Escherichia coli demonstrates preferential translocation of formate over other mixed-acid fermentation products. J Bacteriol 195:1428–1435

    Article  CAS  Google Scholar 

  • Bjarnadottir H, Jonsson JJ (2005) A rapid real-time qRT-PCR assay for ovine beta-actin mRNA. J Biotechnol 117:173–182

    Article  CAS  Google Scholar 

  • Campos-Bermudez VA, Bologna FP, Andreo CS, Drincovich MF (2010) Functional dissection of Escherichia coli phosphotransacetylase structural domains and analysis of key compounds involved in activity regulation. FEBS J 277:1957–1966

    Article  CAS  Google Scholar 

  • Datsenko KA, Wanner BL (2000) One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci USA 97:6640–6645

    Article  CAS  Google Scholar 

  • Fan Z, Yuan L, Chatterjee R (2009) Increased hydrogen production by genetic engineering of Escherichia coli. PLoS One 4:32–44

    Google Scholar 

  • Forzi L, Sawers RG (2007) Maturation of [NiFe]-hydrogenases in Escherichia coli. BioMetals 20:565–578

    Article  CAS  Google Scholar 

  • Ghimire A, Trably E, Frunzo L, Pirozzi F, Lens PNL, Esposito G, Cazier EA, Escudié R (2018) Effect of total solids content on biohydrogen production and lactic acid accumulation during dark fermentation of organic waste biomass. Bioresour Technol 248:180–186

    Article  CAS  Google Scholar 

  • Griffiths AJF, Wessler SR, Varroll SB, Doebley J (2012) Introduction to genetic analysis, 10th edn. W. H. Freeman and Company, New York

    Google Scholar 

  • Haggblom MM, Apetroaie C, Andersson MA, Salkinoja-Salonen MS (2002) Quantitative analysis of cereulide, the emetic toxin of Bacillus cereus, produced under various conditions. Appl Environ Microbiol 68:2479–2483

    Article  CAS  Google Scholar 

  • Hallenbeck PC, Ghosh D (2009) Advances in fermentative biohydrogen production: the way forward? Trends Biotechnol 27:287–297

    Article  CAS  Google Scholar 

  • Jonsson LJ, Alriksson B, Nilvebrant NO (2013) Bioconversion of lignocellulose: inhibitors and detoxification. Biotechnol Biofuels 6:16

    Article  Google Scholar 

  • Kitagawa M, Ara T, Arifuzzaman M, Ioka-Nakamichi T, Inamoto E, Toyonaga H, Mori H (2005) Complete set of ORF clones of Escherichia coli ASKA library (a complete set of E. coli K-12 ORF archive): unique resources for biological research. DNA Res 12:291–299

    Article  CAS  Google Scholar 

  • Liu Y, Harrison PM, Kunin V, Gerstein M (2004) Comprehensive analysis of pseudogenes in prokaryotes: widespread gene decay and failure of putative horizontally transferred genes. Genome Biol 5(9):R64

    Article  Google Scholar 

  • Maeda T, Sanchez-Torres V, Wood TK (2008) Metabolic engineering to enhance bacterial hydrogen production. Microb Biotechnol 1:30–39

    CAS  PubMed  Google Scholar 

  • Maeda T, Tran KT, Yamasaki R, Wood TK (2018) Current state and perspectives in hydrogen production by Escherichia coli: roles of hydrogenases in glucose or glycerol metabolism. Appl Microbiol Biotechnol 102:2041–2050

    Article  CAS  Google Scholar 

  • Menon NK, Chatelus CY, Dervartanian M, Wendt JC, Shanmugam KT, Peck HD, Przybyla AE (1994) Cloning, sequencing, and mutational analysis of the hyb operon encoding Escherichia coli hydrogenase 2. J Bacteriol 176:4416–4423

    Article  CAS  Google Scholar 

  • Meza E, Becker J, Bolivar F, Gosset G, Wittmann C (2012) Consequences of phosphoenolpyruvate:sugar phosphotranferase system and pyruvate kinase isozymes inactivation in central carbon metabolism flux distribution in Escherichia coli. Microb Cell Fact 1:127–140

    Article  Google Scholar 

  • Mohd Yasin NH, Fukuzaki M, Maeda T, Miyazaki T, Che Maail CMH, Ariffin H, Wood TK (2013) Biohydrogen production from oil palm frond juice and sewage sludge by a metabolically engineered Escherichia coli strain. Int J Hydrog Energy 38:10277–10283

    Article  CAS  Google Scholar 

  • Mohd Yusoff MZ, Maeda T, Sanchez-Torres V, Ogawa HI, Shirai Y, Hassan MA, Wood TK (2012) Uncharacterized Escherichia coli proteins YdjA and YhjY are related to biohydrogen production. Int J Hydrog Energy 37:17778–17787

    Article  CAS  Google Scholar 

  • Mohd Yusoff MZ, Hashiguchi Y, Maeda T, Wood TK (2013) Four products from Escherichia coli pseudogenes increase hydrogen production. Biochem Biophys Res Commun 439:576–579

    Article  CAS  Google Scholar 

  • Muñoz M, Ponce E (2003) Pyruvate kinase: current status of regulatory and functional properties. Comp Biochem Physiol B Biochem Mol Biol 135:197–218

    Article  Google Scholar 

  • Nakashima N, Akita H, Hoshino T (2014) Establishment of a novel gene expression method, BICES (biomass-inducible chromosome-based expression system), and its application to the production of 2,3-butanediol and acetoin. Metab Eng 25:204–214

    Article  CAS  Google Scholar 

  • Noguchi K, Riggins DP, Eldahan KC, Kitko RD, Slonczewski JL (2010) Hydrogenase-3 contributes to anaerobic acid resistance of Escherichia coli. PLoS ONE 5:e10132

    Article  Google Scholar 

  • Nuccio S-P, Bäumler AJ (2007) Evolution of the chaperone/usher assembly pathway: fimbrial classification goes Greek. Microbiol Mol Biol Rev 71:551–575

    Article  CAS  Google Scholar 

  • Pandelia ME, Fourmond V, Tron-Infossi P, Lojou E, Bertrand P, Leger C, Giudici-Orticoni MT, Lubitz W (2010) Membrane-bound hydrogenase I from the hyperthermophilic bacterium Aquifex aeolicus: enzyme activation, redox intermediates and oxygen tolerance. J Am Chem Soc 132:6991–7004

    Article  CAS  Google Scholar 

  • Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 29:2002–2007

    Article  Google Scholar 

  • Pink RC, Wicks K, Caley DP, Punch EK, Jacobs L, Francisco Carter DR (2011) Pseudogenes: pseudo-functional or key regulators in health disease? RNA 17:792–798

    Article  CAS  Google Scholar 

  • Rachman MA, Furutani Y, Nakashimada Y, Kakizono T, Nishio N (1997) Enhanced hydrogen production in altered mixed acid fermentation of glucose by Enterobacter aerogenes. J Ferment Bioeng 83:358–363

    Article  CAS  Google Scholar 

  • Rouchka EC, Cha IE (2009) Current trends in pseudogene detection and characterization. Curr Bioinform 4:112–119

    Article  CAS  Google Scholar 

  • Sanchez-Torres V, Maeda T, Wood TK (2009) Protein engineering of the transcriptional activator FhlA to enhance hydrogen production in Escherichia coli. Appl Environ Microbiol 75:5639–5646

    Article  CAS  Google Scholar 

  • Seol E, Ainala SK, Sekar BS, Park S (2014) Metabolic engineering of Escherichia coli strains for co-production of hydrogen and ethanol from glucose. Int J Hydrog Energy 39:19323–19330

    Article  CAS  Google Scholar 

  • Sinha P, Roy S, Das D (2015) Role of formate hydrogen lyase complex in hydrogen production in facultative anaerobes. Int J Hydrog Energy 40:8806–8815

    Article  CAS  Google Scholar 

  • Tran KT, Maeda T, Wood TK (2014) Metabolic engineering of Escherichia coli to enhance hydrogen production from glycerol. Appl Microbiol Biotechnol 98:4757–4770

    Article  CAS  Google Scholar 

  • Zhou J, Rudd KE (2013) EcoGene 3.0. Nucleic Acids Res 41:613–624

    Article  Google Scholar 

Download references

Acknowledgements

We express our gratitude to the National Institute of Genetics (Japan) for providing the Keio mutant and ASKA strains. The authors would like to thank the Ministry of Higher Education, Malaysia for providing Fundamental Research Grant Scheme (02-01-14-1401FR), the School of Graduate Studies, Universiti Putra Malaysia and Japan Student Services Organisation for the scholarship to Muhammad Azman Zakaria during this study.

Author information

Authors and Affiliations

Authors

Contributions

Study conception and design: MZMY and TM. Experiment, analysis and interpretation of data: MAZ and MZMY. Draft and revise the manuscript: MZMY, TM and MRZ. Coordinate the experiments and critical revision: MAH and TKW.

Corresponding author

Correspondence to Mohd Zulkhairi Mohd Yusoff.

Ethics declarations

Conflict of interest

The authors declare that there have no conflict of interest in relation to this article.

Electronic supplementary material

Below is the link to the electronic supplementary material.

13205_2018_1461_MOESM1_ESM.pptx

Fig. S1 H2 productivity from different strains in complex glucose medium. BW25113 (plain white column), BW25113ΔyqiG (black column) and BW25113/pCA24N-YqiG (grey column). Fig. S2 Protein purification using Ni-NTA column. Overexpressed strain visualised by 10% of SDS-PAGE. Arrows indicate expected YqiG protein. Lane 1: Cell lysate, lane 2: Flow through (after bind to Ni-NTA resin), lane 3: After washing with wash buffer and 10 mM imidazole, lane 4: First washing with wash buffer and 20 mM imidazole, lane 5: Second washing with wash buffer and 20 mM imidazole, lane 6 and lane 7: Eluent wash buffer with 130 mM imidazole, and lane 8: protein marker, XL ladder. (PPTX 106 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zakaria, M.A., Mohd Yusoff, M.Z., Zakaria, M.R. et al. Pseudogene product YqiG is important for pflB expression and biohydrogen production in Escherichia coli BW25113. 3 Biotech 8, 435 (2018). https://doi.org/10.1007/s13205-018-1461-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13205-018-1461-2

Keywords

Navigation

-