Invited Review Article

Cardiac Fibroblasts in Cell Culture Systems: Myofibroblasts All Along?

Rohr, Stephan MD

Author Information
Journal of Cardiovascular Pharmacology 57(4):p 389-399, April 2011. | DOI: 10.1097/FJC.0b013e3182137e17

Abstract

The cytoarchitecture of the working myocardium is characterized by densely packed cardiomyocytes that are embedded in a three-dimensional network of numerous fibroblasts. Although the importance of cardiac fibroblasts in maintaining an orderly structured extracellular matrix is well recognized, less is known about their potential paracrine and electrotonic interactions with cardiomyocytes. This is partly the result of the complex intermingling of both cell types in vivo that tends to preclude a direct investigation of heterocellular crosstalk. It is for that reason that most of our present knowledge regarding stromal-parenchymal cell interactions is based on culture systems that permit direct access to either cell type. An often disregarded feature of such studies is that cardiac fibroblasts in standard two-dimensional cell culture have a pronounced tendency to undergo a phenotype switch to myofibroblasts. This cell type typically appears in injured hearts where it contributes importantly to fibrotic remodeling. The present review focuses on recent insights into electrical and paracrine crosstalk between myofibroblasts and cardiomyocytes while acknowledging that a comprehensive understanding of stromal-parenchymal cell interactions will depend on future methodological developments that permit retaining the fibroblast phenotype in cell culture systems and that will, most importantly, allow direct investigations of heterocellular crosstalk in intact tissue.

© 2011 Lippincott Williams & Wilkins, Inc.

You can read the full text of this article if you:

Access through Ovid