This site uses cookies, tags and tracking settings to store information that help give you the very best browsing experience. If you don't change your settings, we'll assume you're happy with this. More information Dismiss this warning

Adipose tissue in control of metabolism

in Journal of Endocrinology
Authors:
Liping Luo Department of Metabolism and Endocrinology, Metabolic Syndrome Research Center, Key Laboratory of Diabetes Immunology, National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital, 
Central South University, Changsha, Hunan, China

Search for other papers by Liping Luo in
Current site
Google Scholar
PubMed
Close
and
Meilian Liu Department of Metabolism and Endocrinology, Metabolic Syndrome Research Center, Key Laboratory of Diabetes Immunology, National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital, 
Central South University, Changsha, Hunan, China
Department of Biochemistry and Molecular Biology, University of New Mexico Health Sciences Center, 
Albuquerque, New Mexico, USA

Search for other papers by Meilian Liu in
Current site
Google Scholar
PubMed
Close

Free access

");
Sign up for journal news

Adipose tissue plays a central role in regulating whole-body energy and glucose homeostasis through its subtle functions at both organ and systemic levels. On one hand, adipose tissue stores energy in the form of lipid and controls the lipid mobilization and distribution in the body. On the other hand, adipose tissue acts as an endocrine organ and produces numerous bioactive factors such as adipokines that communicate with other organs and modulate a range of metabolic pathways. Moreover, brown and beige adipose tissue burn lipid by dissipating energy in the form of heat to maintain euthermia, and have been considered as a new way to counteract obesity. Therefore, adipose tissue dysfunction plays a prominent role in the development of obesity and its related disorders such as insulin resistance, cardiovascular disease, diabetes, depression and cancer. In this review, we will summarize the recent findings of adipose tissue in the control of metabolism, focusing on its endocrine and thermogenic function.

Abstract

Adipose tissue plays a central role in regulating whole-body energy and glucose homeostasis through its subtle functions at both organ and systemic levels. On one hand, adipose tissue stores energy in the form of lipid and controls the lipid mobilization and distribution in the body. On the other hand, adipose tissue acts as an endocrine organ and produces numerous bioactive factors such as adipokines that communicate with other organs and modulate a range of metabolic pathways. Moreover, brown and beige adipose tissue burn lipid by dissipating energy in the form of heat to maintain euthermia, and have been considered as a new way to counteract obesity. Therefore, adipose tissue dysfunction plays a prominent role in the development of obesity and its related disorders such as insulin resistance, cardiovascular disease, diabetes, depression and cancer. In this review, we will summarize the recent findings of adipose tissue in the control of metabolism, focusing on its endocrine and thermogenic function.

Introduction

Adipose tissue, which is primarily composed of adipocytes as well as pre-adipocytes, macrophages, endothelial cells, fibroblasts, and leucocytes, has been increasingly recognized as a major player of systemically metabolic regulation. As the fuel reservoir, adipose tissue conserves the heat of the body and controls the lipid mobilization (Sethi & Vidal-Puig 2007). The surplus energy is efficiently deposited in the form of neutral triglycerides (TGs) in adipose tissue through the lipogenic pathway. However, the storage of neutral TGs in adipocytes increases the lipid droplet size, which results in adipose expansion and subsequent obesity (Tan & Vidal-Puig 2008). By contrast, TGs reserved in adipocytes are broken down into glycerol and fatty acids through lipolytic pathway when food is scarce, energy expenditure requirements are stimulated or the storage of neutral TGs exceeds the capacity of adipocytes (Lafontan & Langin 2009). The released glycerol and fatty acids from adipose tissue can then be transported in the blood and subsequently infiltrate into muscle, liver and other organs, which drives lipid distribution and modulates whole-body energy balance (Frayn 2002).

Adipose tissue is not only a passive fuel reservoir, but also an endocrine organ. Extensive effort has been made to understand adipose tissue-derived factors and their physiological functions in the past two decades (Zhang et al. 1994, Friedman & Halaas 1998, Scherer 2006, Giralt et al. 2016). These bioactive factors secreted from adipose tissue circulate and relay information to other metabolically active organs such as muscle, liver, pancreas and brain via endocrine mechanisms, thereby modulating systemic metabolism (Scherer 2006, Rosen & Spiegelman 2014, Parimisetty et al. 2016). Among these factors, adipokines-cytokines produced by adipose tissue including leptin, adiponectin, visfatin, apelin, vaspin, hepcidin, chemerin and omentin are implicated in obesity and obesity-related metabolic disorders (Lago et al. 2009, Andrade-Oliveira et al. 2015). Adipokine action is mainly mediated by binding to their respective receptors on the membrane of target cells and triggering particular intracellular signalling pathways. An enormous amount of evidence has demonstrated that impaired biosynthesis, assembly, secretion and signalling transduction of adipokines are associated with the development of obesity and its related disorders (Deng & Scherer 2010).

Adipose tissue can be classified into two subtypes: white adipose tissue (WAT) and brown adipose tissue (BAT). BAT, different from WAT which stores extra energy as TGs, dissipates chemical energy as heat via high levels of uncoupling protein 1 (UCP1) and combats hypothermia and obesity by burning lipid. Interestingly, it has been known for several years that there is another type of WAT called beige or brite (brown-like-in-white) fat, in which UCP1 expression can be stimulated by cold stress or β3-adrenoceptor agonists that mimic cold stress (Barbatelli et al. 2010, Petrovic et al. 2010, Bostrom et al. 2012). Both brown and beige fat have thermogenic characteristics and offer a new way to battle obesity and other metabolic disorders (Ishibashi & Seale 2010, Harms & Seale 2013, Cohen et al. 2014). In this summary, we will focus on the endocrine and thermogenic function of adipose tissue and its potential therapeutic application for the treatment of obesity-associated metabolic diseases.

Characteristics of adipocytes

Adipocytes, also called adipose cells or fat cells, are the predominant cell type in adipose tissue. In mammals, there are three types of adipocytes: white, brown and beige (brite). They differ in origin, morphology, abundance of mitochondria and thermogenic genes expression. White adipocytes are mainly present in WAT with variable size (25–200 μm) and have a unilocular lipid droplet, few mitochondria and a low oxidative rate (Jeanson et al. 2015). In line with this, white adipocytes have high capacity of storing energy in the form of TGs, and protect organs such as muscle and liver from lipotoxicity (Tan & Vidal-Puig 2008). Although white adipocytes arise from resident cells of mesenchymal origin in white fat, subcutaneous adipocytes have distinct developmental origins and metabolic properties from visceral adipocytes in rodents and humans (Laviola et al. 2006, Ibrahim 2010, Berry et al. 2013, Chau et al. 2014). Visceral fat including mesenteric, gonadal, epicardial, retroperitoneal, omental and peri-renal fat pad is thought to be more deleterious, while subcutaneous WAT is protective in the development of obesity and related metabolic disease in rodents (Foster et al. 2011, Seale et al. 2011). In support of this, transplantation of subcutaneous but not visceral adipose tissue improves glucose tolerance and insulin sensitivity in rodents (Tran et al. 2008, Foster et al. 2013). Although there is still a controversy about metabolic function of subcutaneous and visceral fat in humans (Thorne et al. 2002, Fabbrini et al. 2010), the fat distribution, rather than total fat mass, most likely plays an important role in the development of obesity and its associated diseases. More studies are urgently needed to elucidate whether transplantation of subcutaneous fat in humans is as efficient as that in rodents.

Brown adipocytes were originally thought to be a skeletal muscle-like lineage arising from Myf5+ precursors (Seale et al. 2008, Lepper & Fan 2010). However, the complexity of adipocyte origin and identity has been considered recently. First, brown adipocytes are not only from Myf5+ precursors. Although interscapular and subscapular BAT are derived from Myf5+ lineage, cervical BAT are partially and peri-renal and peri-aortic BAT are completely from Myf5 precursors (Sanchez-Gurmaches & Guertin 2014). In addition, Myf5+ precursors have been shown to be present in interscapular and retroperitoneal WAT and are capable of giving rise to some white/brite adipocytes (Sanchez-Gurmaches et al. 2012, Sanchez-Gurmaches et al. 2016). Brown adipocytes are specialized cells with multilocular morphology, abundant mitochondria and enrichment of UCP1, and dissipate stored energy in the form of heat (Aherne & Hull 1966, Cannon & Nedergaard 2004). UCP1 is located in the inner mitochondrial membrane and uncouple fuel oxidation from ATP synthesis (Fedorenko et al. 2012). Brown adipocyte clusters mainly exist in the interscapular and peri-renal regions of rodents and in abdominal sites, like peri-renal region of human infants, where they are richly innervated and vascularized (Blaza 1983, Bamshad et al. 1999, Bartness et al. 2010). The adult human BAT was recently identified in the lower neck and supraclavicular areas by 18F-fluorodeoxyglucose (FDG) positron emission tomography-computed tomography (PET-CT) scanning (Nedergaard et al. 2007, Cypess et al. 2009, van Marken Lichtenbelt et al. 2009, Virtanen et al. 2009, Zingaretti et al. 2009). However, the characteristics of newly identified brown fat in human adults is unclear. Wu and coworkers found that human brown fat has similar features as mouse beige adipocytes because it expresses beige marker CD137, TMEM26 and TBX1, and UCP1 is greatly induced by cAMP stimulation (Wu et al. 2012). Whereas another study from Jespersen and coworkers showed that in addition to beige markers, brown markers including miR-206, miR133b, LHX8 and ZIC1 are expressed in the supraclavicular BAT, suggesting the presence of both brown and beige adipocytes in adult humans (Jespersen et al. 2013). In addition, the validity of brown and beige markers has not been well documented. A recent study shows that only ZIC1 but not LHX8 proves to be the marker of brown fat as well as brown adipocytes (de Jong et al. 2015). Therefore, more studies are needed to define and characterize the human BAT, a potential therapeutic target for the treatment of obesity.

Beige adipocytes are a distinct type of brown-like thermogenic adipocytes with multilocular morphology and UCP1 positive expression, mainly arising from Myf5 progenitor cells as white adipocytes (Wu et al. 2012). Beige adipocytes exist mainly in subcutaneous white fat and are found in a small portion in visceral fat as well. The recruitment and activation of beige adipocytes are markedly induced by cold stress or by a β3-adrenoceptor agonist that mimics cold stress, a process known as browning or beiging of WAT (Young et al. 1984, Cousin et al. 1992, Harms & Seale 2013). However, it has also been postulated that beige adipocytes develop in adipose tissue through two distinct pathways. On one hand, beige adipocytes arise from Myf5 adipocyte lineage through de novo generation in adipose tissue (Seale et al. 2008, Petrovic et al. 2010, Wu et al. 2012, Wang et al. 2013). In support of this, PDGFRα+ adipocyte precursors as bipotential progenitor cells exist in fat. They are able to be differentiated into either beige or white adipocytes, and the commitment of adipocyte progenitors to beige adipocytes precursors is promoted by interleukin 4 receptor α (IL4Rα) signalling (Lee et al. 2012, Wang et al. 2014, Lee et al. 2015a). Alternatively, Sca1+ progenitor cells (a subpopulation of adipogenic progenitors) can be induced and differentiated into brown-like adipocytes with bone morphogenetic protein 7 (BMP7) stimulation in the skeletal muscle and subcutaneous white fat (Schulz et al. 2011). On the other hand, studies have shown that beige adipocytes can be derived from interconversion from white adipocytes or through transdifferentiation of matured white adipocytes in WAT (Himms-Hagen et al. 2000, Barbatelli et al. 2010, Rosenwald et al. 2013), given that PDGFRα+ preadipocytes are not recruited and do not significantly contribute to cold-induced WAT browning (Lee et al. 2015b, Vishvanath et al. 2016). In addition, Lee and coworkers show that the newly observed UCP1 positive cells derived from adiponectin+ unilocular white adipocytes rather than PDGFRα+ preadipocytes in inguinal WAT (Lee et al. 2015b). Taken together, beige adipocytes can be derived from beige progenitor lineage, transdifferentiated from mature white adipocytes, or differentiated from other origins. However, the molecular mechanisms underlying the commitment of beige progenitor lineage and transdifferentiation remain to be established.

Adipogenesis and its regulation

Adipogenesis is a cell process of differentiation from committed preadipocytes into mature adipocytes, and plays an important role in adipose development and systemic energy homeostasis (Lefterova & Lazar 2009, Ali et al. 2013). As a result, the transcriptional regulation of adipogenesis has been well studied. Peroxisome proliferator-activated receptor γ (PPARγ), a member of nuclear-receptor superfamily, has been shown to act as the master regulator of adipogenesis (Rosen et al. 2000). Overexpressing PPARγ is sufficient to induce adipocyte differentiation in fibroblasts, and deficiency of PPARγ fails to promote adipogenic programmes and results in lipodystrophy (Tontonoz et al. 1994, Hegele et al. 2002, Koutnikova et al. 2003). Moreover, other factors or path­ways including pro-adipogenic factors such as C/EBPs, and Krüppel-like factors (KLFs) and anti-adipogenic factors such as GATA transcription factors regulate adipogenesis via PPARγ-dependent mechanisms (Rosen et al. 2000, Farmer 2006). Furthermore, PPARγ is not only crucial for adipogenesis but is also required for the maintenance of differentiation (Rosen et al. 2000, Farmer 2006). In support of this, impairing PPARγ function by overexpression of a dominant-negative form downregulates the expression of key genes in lipid metabolism and insulin signalling and decreases the cell size and lipid content in 3T3-L1 differentiated adipocytes (Tamori et al. 2002). In line with this, selective ablation of PPARγ in mature white and brown adipocytes leads to adipocyte death, while having little effect on the preadipocyte differentiation (Imai et al. 2004). Therefore, PPARγ has been considered as a therapeutic target for the treatment of obesity-related disorders. To this end, extensive effort has been placed on studying the regulation of PPARγ expression and its activity (Farmer 2005, Lee & Ge 2014). Thiazolidinediones (TZDs) as the synthetic full agonists of PPARγ have been shown to improve insulin sensitivity and glucose control by activating PPARγ. However, their use has been hampered because of severe side effects. Partial agonists have been identified as selective PPARγ modulators with great promise for the treatment of type 2 diabetes (Higgins & Depaoli 2010, Taygerly et al. 2013, Kroker & Bruning 2015). INT131 (previously AMG131) acts as one of the selective PPARγ modulators to partially activate transcriptional output, enhances insulin sensitivity with decreased side effects in preclinical models and has been tested in phase II clinic trial (Kintscher & Goebel 2009, Higgins & Depaoli 2010, Taygerly et al. 2013, DePaoli et al. 2014).

C/EBPs are a type of transcription factors homologous to CCAAT/enhancer-binding protein including C/EBPα, C/EBPβ, C/EBPγ, C/EBPδ and CHOP (Rosen & Spiegelman 2000). C/EBPs are induced during adipogenesis and coordi­nate with PPARγ to regulate adipocyte differentiation (El-Jack et al. 1999, Wu et al. 1999, Rosen et al. 2002, Zuo et al. 2006). The expression of C/EBPα is upregulated by PPARγ, which in turn promotes PPARγ transcription and substantially induces the expression of other adipogenic genes (Rosen et al. 2002, Lefterova et al. 2008, Cho et al. 2009). As a result, C/EBPα deficiency leads to WAT loss and impaired development of BAT, suggesting a critical role of C/EBPα in adipogenesis (Wang et al. 1995). Two other C/EBP family members C/EBPβ and C/EBPδ also play important roles in regulating adipogenesis by activating the transcription of C/EBPα and PPARγ, particularly in early state of adipocyte differentiation (Tanaka et al. 1997, Tang et al. 2004, Zhang et al. 2004).

PRDM16, a zinc-finger transcriptional co-regulator, has been shown to drive brown adipocyte differentiation and repress myogenesis (Seale et al. 2008, Kajimura et al. 2009). Unlike PPARγ and C/EBPs, the key transcriptional factors of all types of adipocytes, PRDM16, functions as a key driver of brown adipocytes (Rosen & MacDougald 2006). PRDM16 selectively initiates the switch of myoblasts to brown adipocytes by forming a transcriptional complex with C/EBPβ. PRDM16 concurrently suppresses white adipocyte-specific genes by forming complexes with C-terminal binding proteins CTBP1 and CTBP2 (Kajimura et al. 2009). On the other hand, CTBPs can be displaced through the recruitment of PPARγ co-activators PGC1α and PGC1β, which leads to activation of brown fat-specific genes (Kajimura et al. 2008). Although both PRDM16 and PGC1α are the main regulators of brown and beige adipocytes, PGC1α is required for the expression of mitochondrial biogenesis and thermogenic genes but not for differentiation genes, indicating that PGC1α is essential for thermogenesis rather than adipogenesis (Uldry et al. 2006). Furthermore, adipogenesis is regulated by multiple other factors including positive regulators such as BMPs and early B-cell factor (O/E1), and negative regulators such as transforming growth factor β (TGF-β) and preadipocyte factor 1 (Pref1) (Choy & Derynck 2003, Wang et al. 2006, Jimenez et al. 2007, Margoni et al. 2012). In addition, recent studies have also shown that miRNAs and long noncoding RNA (lncRNA) play important roles in regulating adipogenesis (Park et al. 2015). However, the intracellular mechanisms underlying the role of these factors in regulating adipogenesis remain to be fully understood.

Adipose tissue as an energy storage organ

As an energy storage organ, adipose tissue stores TGs and releases fatty acids through lipogenesis and lipolysis, respectively. Systemically, feeding stimulates the lipogenic pathway and storage of TGs in the adipose tissue, while fasting induces the activation of lipolytic pathway and promotes the breakdown of TGs and release of fatty acids from adipose tissue. Lipogenesis is the process that encompasses de novo fatty acid synthesis from acetyl-coenzyme A (acetyl-CoA) and TG biosynthesis. Glucose provides its own metabolite acetyl-CoA as the substrate for de novo synthesis of fatty acids, induces the expression of acetyl-CoA carboxylase (ACC), the rate-limiting enzyme of lipogenesis and stimulates the release of pancreatic insulin which promotes lipogenesis (Fig. 1). As a result, insulin stimulates glucose uptake in the adipocytes, activates glycolytic and lipogenic enzymes, and stimulates the expression of lipogenic gene sterol regulatory element-binding protein 1 (SREBP1) that controls the expression of genes required for cholesterol, fatty acids, TG and phospholipid synthesis (Assimacopoulos-Jeannet et al. 1995, Ferre & Foufelle 2007). In addition to SREBP1, another transcriptional factor carbohydrate response element-binding protein (ChREBP) promotes de novo lipogenesis (DNL) gene expression and has been shown to modulate both lipid and glucose metabolism in adipose tissue and substantial whole-body insulin sensitivity (Herman et al. 2012, Eissing et al. 2013). However, under normal conditions, DNL is relatively low in WAT compared with liver and BAT in rodents and even lower in humans (Swierczynski et al. 2000, Letexier et al. 2003). The fatty acids used for TGs biosynthesis in adipocytes are actually mainly from circulating, while glucose provides glycerol for esterifying fatty acids taken up from the circulating TGs in chylomicrons and very low-density lipoproteins (VLDL). Lipoprotein lipase (LPL), the key enzyme hydrolyzing one fatty acid from circulating TGs, plays a critical role in facilitating entry of fatty acids into adipocytes (Kersten 2014). LPL is secreted from adipocytes, translocates to the lumen of WAT capillaries and releases fatty acids from circulating TGs (Fielding & Frayn 1998, Frayn 2002) (Fig. 1). The regulation of LPL expression is modulated by multiple factors at the posttranslational level (Kersten 2014). Angiopoietin-like 4 (Angptl4) has been demonstrated to inhibit LPL activity by regulating its conformation and/or intracellular degradation during fasting (Sukonina et al. 2006, Dijk et al. 2016). During the sequential esterification processes of fatty acids, diacylglycerol acyltransferase (DGAT) catalyzes the final and critical step in the TGs synthesis pathway, and plays an important role in lipid deposition in adipocytes (Smith et al. 2000, Harris et al. 2011). Insulin, as a predominant stimulus, promotes fatty acid uptake and esterification through multiple mechanisms including activation of LPL, induction of translocation of fatty acid transport protein and upregulation of related gene expression in adipocytes (Raben & Hollenberg 1960, O’Brien & Granner 1996, Picard et al. 1999, Dimitriadis et al. 2011). In addition, growth hormone (GH) and acylation stimulating protein (ASP) produced by adipose tissue have an important influence on regulation of lipogenesis. GH suppresses lipogenesis by regulating insulin sensitivity or Stat5 signalling (Teglund et al. 1998, Yin et al. 1998, Etherton 2000). ASP has been shown to increase TGs synthesis by activating DGAT and induce subcutaneous fat storage in females (Haagsman et al. 1982, Yasruel et al. 1991, Saleh et al. 2011). Taken together, adipose tissue as a fuel reservoir, plays a vital role in buffering fluxes of fatty acids, lipotoxicity and insulin resistance as well as regulating clearance of plasma TGs and keeping it from being deposited in other tissues (Frayn 2002). In other words, the storage capacity of lipid in adipose tissue is a determinant of systemic insulin resistance and lipid infiltration into other tissues such as liver and muscle.

Figure 1
Figure 1

Lipid metabolism and mobilization controlled by adipose tissue. Lipogenesis is a process by which carbohydrate is converted into fatty acids, and promotes the biosynthesis of TG and expansion of lipid droplet in adipocytes. Lipolysis, in an opposite way, breaks down TG to free fatty acid (FFA) and glycerol that can be either oxidized or released. The uptake of circulating FFA by liver, muscle and other tissues is a main pathway of lipid mobilization. Both lipogenic and lipolytic pathways are sensitive to nutrition as well as hormones such as insulin, norepinephrine and glucagon. Thus, a subtle regulation of lipogenesis and lipolysis is required for systemic energy homeostasis and insulin sensitivity. AR, adrenergic receptor; cAMP, cyclic adenosine monophosphate; IR, insulin receptor; PKA, protein kinase A.

Citation: Journal of Endocrinology 231, 3; 10.1530/JOE-16-0211

Opposite to lipogenesis, lipolysis is the catabolic process leading to the breakdown of TGs stored in adipocytes and subsequently the release of free fatty acids and glycerol (Zechner et al. 2005, Carmen & Victor 2006, Langin 2006) (Fig. 1). Lipolysis is induced by fasting and supplies glycerol for hepatic gluconeogenesis and free fatty acids for oxidation according to energy needs in other organs (Kuriyama et al. 2002). Importantly, glycerol but not fatty acids can be used as a substrate for gluconeogenesis in the liver. In the state of high fatty acid and diminished carbohydrate availability, fatty acids can be further broken down to produce a group of substances collectively known as ketone bodies providing for the brain, which is the process called ketogenesis in the liver. Several hormones have been shown to regulate the lipolytic pathway. During fasting, decreased circulating levels of insulin result in suppression of lipogenesis as well as activation of the lipolytic pathway. Consistently, elevated circulating glucagon during fasting is also responsible for the activation of cAMP-dependent protein kinase A (PKA) pathway and lipolysis in adipocytes. Meanwhile, catecholamine released by sympathetic nervous system (SNS) is also stimulated by fasting, binds to β-adrenoceptor, then activates PKA and lipolytic pathways (Carmen & Victor 2006). Lipolysis consists of lipase-based breakdown of tri-, di- and monoacylglycerides (MGs) into individual fatty acids. Adipocyte triglyceride lipase (ATGL) and hormone-sensitive lipase (HSL) are the first two primary lipases for lipolysis and separately responsible for the conversion of TGs to diglycerides (DGs) and hydrolysis of DGs to MGs (Haemmerle et al. 2002, Zimmermann et al. 2004). Lipid droplet-associated proteins such as perilipin is polyphosphorylated by PKA and then translocates HSL to the lipid droplets for lipolysis (Marcinkiewicz et al. 2006, Brasaemle 2007, Lafontan & Langin 2009). Furthermore, recent studies also show that cell death-inducing DNA fragmentation factor 45-like effector family proteins (Cides), including Cidea, Cideb and Cidec (Fsp27) play critical roles in the control of lipid droplet morphology and have a distinct function in adipocytes and hepatocytes (Gong et al. 2009). In line with this, both Cidea and Cidec localize on the surface of lipid droplets, particular LD-LD contact sites, and promote atypical LD fusion and growth by lipid exchange and transfer in adipocytes (Gong et al. 2011, Wu et al. 2014, Barneda et al. 2015). Although some studies show that ATGL and HSL are responsible for basal lipolysis and PKA-stimulated lipolysis, respectively, in adipocytes, the physiological function of ATGL and HSL remains controversial (Birnbaum 2003, Langin & Arner 2006). It has been shown that global deficiency of ATGL leads to impaired lipolysis, mild obesity and cold intolerance (Haemmerle et al. 2006). Consistent with this, adipose-specific desnutrin/ATGL knockout mice display decreased lipolysis, thermogenesis and fatty acid oxidation despite increased fat mass and improved hepatic insulin sensitivity (Ahmadian et al. 2011). However, global HSL-deficient mice display slightly decreased TGs hydrolysis and increased BAT mass, while exhibiting similar WAT mass, body mass and cold tolerance, suggesting that the compensatory effects of other lipases may exist when HSL is lacking (Osuga et al. 2000). Given that adiposity-induced mobilization of fatty acids from adipose tissue to other organs is a main cause of insulin resistance, inhibition of lipolysis has been considered for the treatment of insulin resistance (Guilherme et al. 2008). However, lipolysis is also closely linked to thermogenesis and energy expenditure by supplying fatty acids for β-oxidation (Haemmerle et al. 2006, Mottillo et al. 2012, Chondronikola et al. 2016). On the other hand, inhibiting adipose lipogenesis by fatty acid synthase deficiency promotes energy expenditure and protects from diet-induced obesity and insulin resistance (Lodhi et al. 2012). These findings suggest that the balance between lipogenesis and lipolysis is critical for maintaining systemic energy homeostasis and insulin sensitivity.

The endocrine function of adipose tissue

In addition to storing energy, adipose tissue exerts an extremely active endocrine function and produces a variety of factors which circulate and regulate systemic metabolism and inflammation (Maury & Brichard 2010, Fasshauer & Bluher 2015) (Fig. 2). Among these factors, adipokines are defined as those cytokines secreted by adipose tissue. Leptin was the first adipokine to be discovered in 1994 (Zhang et al. 1994), followed by the cloning of adiponectin in 1995 (Scherer et al. 1995). Many other adipokines including resistin, chemerin, apelin, visfatin, plasminogen activator inhibitor 1 (PAI1), monocyte chemoattractant protein 1 (MCP1), tumour necrosis factor alpha (TNFα) and interleukin 6 (IL6) were later discovered (Fasshauer & Bluher 2015). Leptin as well as adiponectin is the adipokine mainly secreted from adipocytes, known as adipocyte hormone, and plays an important role in regulating energy homeostasis (Bluher & Mantzoros 2015). Leptin is also produced or present in other non-adipose organs like stomach, muscle and intestine (Bado et al. 1998, Wang et al. 1998, Sobhani et al. 2000, Hansen et al. 2008). Although resistin was originally described as adipocyte-specific hormone linking obesity and insulin resistance, increasing evidence indicates that resistin is also expressed moderately in mononuclear leucocytes, macrophages and bone marrow cells in humans (Jamaluddin et al. 2012). Similar to resistin, chemerin was thought to be an adipocyte hormone and regulate adipocyte differentiation and lipolysis. However, it is also found in other cell types such as endothelial cells (Goralski et al. 2007, Mattern et al. 2014). Adipose-resident immune cells and endothelial cells are the main sources of other adipokines including apelin, visfatin, PAI1, MCP1, TNFα and IL6 (Loskutoff & Samad 1998, Weisberg et al. 2003, Boucher et al. 2005, Kanda et al. 2006, Saddi-Rosa et al. 2010). Dysregulated production or secretion of these adipokines causes adipose tissue dysfunction and is implicated in obesity-induced inflammation and insulin resistance.

Figure 2
Figure 2

The physiological functions of adipokines. Adipokines, the cytokines derived from adipose tissue, act to regulate insulin sensitivity, inflammation, cardiovascular function, behaviour and cell growth, resulting in the development of obesity-induced metabolic diseases. ASP, acylating simulation protein; FGF21, fibroblast growth factor 21; IL6, interleukin 6; MCP1, monocyte chemoattractant protein 1; PAI1, plasminogen activator inhibitor 1; TNFα, tumour necrosis factor alpha.

Citation: Journal of Endocrinology 231, 3; 10.1530/JOE-16-0211

Leptin

Leptin, a satiety hormone of 16-kDa peptide encoded by the obesity (ob) gene regulates energy balance by inhibiting hunger (Zhang et al. 1994, Halaas et al. 1995, Caro et al. 1996). The satiety effect of leptin is achieved by passing the blood–brain barrier and targeting the hypothalamus, a primary hunger centre regulating food intake and body weight to regulate adipose tissue mass by decreasing food intake and modulating glucose and fat metabolism (Zhang et al. 1994, Trayhurn et al. 1998, Dieguez et al. 2011, Morton & Schwartz 2011). In support of this, mice with deficiency of leptin expression (ob/ob) or receptor function (db/db) display increased food intake/hyperplasia, decreased energy expenditure and severe early onset obesity (Coleman 1978, Zhang et al. 1994, Lee et al. 1996). Along this line, administration of recombinant leptin in rodents suppresses food intake and promotes energy expenditure and weight loss, despite the fact that humans do not demonstrate the same dramatic results (Halaas et al. 1995, Pelleymounter et al. 1995, Heymsfield et al. 1999, Westerterp-Plantenga et al. 2001).

Leptin action in hypothalamus is mediated by leptin receptor and downstream signalling pathways including JAK2/STAT3 pathway (Sahu 2003). By binding to its receptors, leptin inhibits orexigenic neurons such as neuropeptide Y (NPY)/agouti-related protein (AgRP) neurons (Schwartz et al. 1996, Arvaniti et al. 2001). Moreover, leptin controls feeding by regulating multiple orexigenic neuropeptides including NPY, AgRP, melanin-concentrating hormone (MCH), galanin, orexin and galanin-like peptide (Schwartz et al. 1996, Sahu 1998, Lopez et al. 2000, Meister 2000, Arvaniti et al. 2001, Kumano et al. 2003). In addition, the satiety effect of leptin is also mediated by regulation of anorexigenic peptides such as POMC, cocaine- and amphetamine-regulated transcript, neurotensin, corticotropin-releasing hormone and brain-derived neurotrophic factor (BDNF) (Golden et al. 1997, Sahu 1998, Meister 2000, Liao et al. 2012). Although the central effect of leptin has been well studied, accumulating studies show that leptin also plays an important role in directly regulating the function of peripheral organs like reproductive organs (Moschos et al. 2002, Perez-Perez et al. 2015). Leptin targets pancreatic β-cell to modulate glucose homeostasis through producing effects on β-cell mass and insulin expression and secretion (Marroqui et al. 2012). Moreover, leptin regulates the immune response including both adaptive and innate immune cells that links to metabolic adaption (Naylor & Petri 2016). Furthermore, some studies show that leptin increases energy expenditure given that ob/ob mice display hypo-metabolic rate and decreased oxygen consumption, and leptin administration increased energy expenditure when normalized to body weight (Trayhurn et al. 1977, Pelleymounter et al. 1995). However, some of later studies do not support this and argue that the hypometabolism in leptin-deficient mice is only the effect of normalization (Himms-Hagen 1997, Kaiyala et al. 2015, Fischer et al. 2016). When the energy expenditure is not normalized, leptin deficiency leads to increase of oxygen consumption and hyper-metabolism (Himms-Hagen 1997, Kaiyala et al. 2015). However, some groups found that leptin administration has little effect on the energy expenditure without normalization (Ukropec et al. 2006, Fischer et al. 2016). Moreover, other two studies show that leptin treatment has little effect on energy expenditure even when the data is normalized with body mass (Doring et al. 1998, Hogberg et al. 2006). This controversy needs to be further clarified.

As leptin inhibits appetite and promotes weight loss, it has been widely considered as a therapeutic target for the treatment of obesity and its associated disorders. The recombinant leptin has been developed and applied in clinical treatment. However, majority of obese patients exhibit leptin resistance. Thus, treatment with classical leptin may not be of therapeutic potential in the general population (Farooqi et al. 1999, Savage & O’Rahilly 2002, Chou & Perry 2013). Alternatively, the drugs improving leptin sensitivity offer a new way to treat obese patients. Amylin (pramlintide), a potential leptin sensitizer, has been shown to exert a weight-lowering effect together with leptin or leptin analog metreleptin. However, a recent clinical trial suggests that amylin administration causes multiple adverse effects such as antibody generation and skin reactions (Moon et al. 2013, Bluher 2014). Thus, the development of safe leptin analogs/sensitizers is urgently needed for leptin-based therapeutic purpose.

Adiponectin

Adiponectin, a member of the complement 1q family, is a 30-kDa adipokine and exerts multiple beneficial effects including an insulin sensitizing effect, cardiovascular protection and anti-inflammation (Tomas et al. 2002, Gil-Campos et al. 2004, Haluzik et al. 2004, Hoffstedt et al. 2004, Hui et al. 2012). The circulating levels of adiponectin are ~10–30 µg/mL or about 0.01% of plasma proteins and remarkably higher compared with other conventional hormones such as insulin and leptin (Pajvani et al. 2003). Adiponectin is present primarily in three species: a low-molecular-weight (LMW) trimer of approximately 67 kDa, a hexamer of ~120 kDa and a high-molecular-weight (HMW) multimer of >300 kDa. The HMW adiponectin has been shown to possess the most potent insulin sensitizing activity (Tsao et al. 2002, Waki et al. 2003, Pajvani et al. 2004).

Circulating adiponectin is capable of targeting multiple tissues and regulating insulin sensitivity as well as energy homeostasis. Liver is a primary target tissue of adiponectin, and the action of adiponectin in liver contributes predominantly in its insulin sensitizing effect. It has been shown that adiponectin activates AMP-acti­vated protein kinase (AMPK) and reduces the expression of gluconeogenic enzymes such as phosphoenolpyruvate carboxylase and glucose-6-phosphatase, leading to the suppression of gluconeogenesis (Combs et al. 2004, Nawrocki et al. 2006). In addition, adiponectin is able to enhance the ceramidase activity and suppress hepatic ceramide content by which it improves hepatic and whole-body insulin sensitivity independent of AMPK (Holland et al. 2011). Moreover, adiponectin also exerts its insulin sensitizing effects through modulating the biological actions of growth factors such as platelet-derived growth factor, fibroblast growth factor (FGF) and heparin-binding epidermal growth factor-like growth factor (HB EGF) (Wang et al. 2005). In addition to targeting liver, the globular form of adiponectin (gAd) has been shown to activate the AMPK pathway in skeletal muscle, leading to increased phosphorylation of ACC, fatty acid oxidation and glucose uptake (Tomas et al. 2002, Yamauchi et al. 2002). Besides insulin sensitizing, another functional role of adiponectin is to regulate thermogenesis and energy homeostasis (Masaki et al. 2003, Qi et al. 2004, Kubota et al. 2007, Kajimura et al. 2013, Hui et al. 2015). However, it remains controversial whether adiponectin promotes or suppresses energy homeostasis and thermogenesis. The physiological function and underlying mechanisms of adiponectin in the regulation of energy expenditure need to be clarified in the future.

Adiponectin exerts multiple beneficial effects by binding to its receptors, adiponectin receptor 1 and receptor 2 (AdipoR1 and AdipoR2) (Yamauchi et al. 2003, Kadowaki et al. 2006, Yamauchi et al. 2007). In addition, T-cadherin, a cell surface-anchored glycoprotein, is effective in binding adiponectin and mediates adiponectin signalling, while it falls short of being a receptor that binds to both ligands and transduces intracellular signalling pathways (Denzel et al. 2010). There is accumulating evidence showing that adiponectin exhibits insulin sensitizing effect through multiple signalling pathways downstream of adiponectin receptors, such as AMPK, Ca2+, PPARα, ceramide and S1P (Yamauchi et al. 2007, Zhou et al. 2009, Iwabu et al. 2010, Holland et al. 2011). Moreover, as an AdipoR1 and AdipoR2 interactive protein, APPL1 (adaptor protein containing pleckstrin homology domain, phosphotyrosine-binding domain and leucine zipper motif) positively mediates adiponectin signalling and its insulin sensitizing effect in muscle cells (Mao et al. 2006, Zhou et al. 2009, Fang et al. 2010, Cleasby et al. 2011, Xin et al. 2011). AMPK pathway, downstream of adiponectin receptor signalling, is critical for adiponectin action in the liver, muscle and other organs (Yamauchi et al. 2002). However, adiponectin has later been found to suppress hepatic glucose production through an interleukin 6 (IL6)-dependent but AMPK-independent pathway (Awazawa et al. 2011, Miller et al. 2011). However, whether AMPK is dispensable for the glucose lowering effect of adiponectin in the liver remains to be fully understood.

Resistin

Resistin is a 12-kDa peptide and originally found to be secreted from adipocytes in mice (Savage et al. 2001, Steppan et al. 2001b). However, whether resistin is a human adipokine has been challenged for a while. Although McTernan et al. show that resistin is produced by both human preadipocytes and adipocytes (McTernan et al. 2002), Nagaev and coworkers find that the mRNA levels of resistin are relatively low in primary human adipocytes (Nagaev & Smith 2001). In addition, the following studies demonstrate that resistin is mainly produced by human monocytes and macrophages rather than by adipocytes (Patel et al. 2003, Curat et al. 2006). Resistin circulates in the form of hexamer and LMW complex, and hexamer is an active form (Patel et al. 2004). Circulating levels of resistin are significantly increased by obesity and implicated in obesity-induced insulin resistance and type 2 diabetes in rodents (Steppan et al. 2001a). Supportively, central administration of resistin induces whole-body insulin resistance by downregulation of adiponectin signalling and induction of fibroblast growth factor 21 (FGF21) resistance (Benomar et al. 2016). Furthermore, resistin treatment promotes the production of inflammatory cytokines such as TNFα and IL6 as well as adhesion molecule and chemokines such as ICAM1 and VCAM1 (Verma et al. 2003). However, the correlation between resistin and obesity remains controversial. In humans, some studies showed that the circulating levels of resistin are increased during ageing and are elevated in obese and diabetic individuals (Degawa-Yamauchi et al. 2003, Oliver et al. 2003, Gerber et al. 2005) while others reported that the circulating levels of resistin are not correlated with obesity and insulin resistance (Lee et al. 2003, Filippidis et al. 2005, Hasegawa et al. 2005, Iqbal et al. 2005). Besides, several animal studies show that the mRNA levels of resistin in adipose tissue are downregulated in adipose tissue of obese animals, and are not associated with circulating levels of insulin or glucose (Le Lay et al. 2001, Milan et al. 2002, Lee et al. 2005). Thus, the physiological function of resistin needs to be further clarified in the future.

FGF21

Fibroblast growth factor 21 (FGF21) has been defined as a hepatokine, adipokine and myokine and exerts diverse biological functions in metabolism (Hotta et al. 2009, Fisher et al. 2012, Kim et al. 2013). As an adipokine, FGF21 is induced by cold exposure, and in turn promotes thermogenic gene expression in BAT and inguinal WAT (iWAT) (Hondares et al. 2010, Fisher et al. 2012, Adams et al. 2013, Emanuelli et al. 2014, Lee et al. 2014a). FGF receptor 1c and a coreceptor β-klotho have been suggested to mediate the action of FGF21 in BAT and iWAT (Itoh 2010, Foltz et al. 2012). Moreover, FGF21 induces browning effect and thermogenic gene expression by upregulating PGC1α through paracrine and/or autocrine mechanisms (Hondares et al. 2011, 2014, Fisher et al. 2012, Lee et al. 2014b). However, it remains unknown whether FGF21 regulates metabolic pathways solely dependent on its action in adipose tissue. Some studies suggest that FGF21 action in WAT mediates its beneficial effect on metabolic parameters such as body weight, glucose homeostasis and plasma TGs (Wu et al. 2011, Veniant et al. 2012). Whereas another study shows that FGF21 requires neither UCP1 nor brite adipocytes to elicit weight loss and improve glucose homeostasis (Veniant et al. 2015). In addition, the circulating levels of FGF21 are upregulated in obese and type 2 diabetic patients, suggesting that this paradoxical increase of FGF21 may be a compensatory response or a result from FGF21 resistance (Chen et al. 2008, Zhang et al. 2008). Although FGF21 has drawn growing attention for its anti-obesogenic and antidiabetic actions, the mechanisms underlying FGF21 action need to be established (Emanuelli et al. 2014).

Thermogenic function of brown and beige adipose tissue

Brown and beige fat dissipate energy in the form of heat and offer a new way to battle obesity and its associated disorders (Lowell & Spiegelman 2000, Cannon & Nedergaard 2004). Different from brown fat with relatively high thermogenic activity and enrichment of UCP1 under thermoneutral condition in rodents, the expression of UCP1 in beige fat is very low under this condition, which may be due to low number of beige adipocytes as well as low expression level of UCP1 in individual beige adipocytes (Wu et al. 2012). However, the UCP1 expression in beige fat is markedly induced upon cold exposure or treatment of agonists of the β3-adrenoceptor or PPARγ (Young et al. 1984, Cousin et al. 1992, Petrovic et al. 2010, Wu et al. 2012). Regardless of cold stimulation, the expression levels of UCP1 protein in beige fat are still relatively lower compared with brown fat where the UCP1 gene is also induced at certain extent (Nedergaard & Cannon 2013). Moreover, the mRNA and protein of UCP1 are differentially altered at some particular conditions, suggesting the importance of protein analysis of UCP1 as a thermogenic marker in the future studies (Nedergaard & Cannon 2013). On the other hand, the thermogenic activity and physical location of brown and beige fat vary in different species. It has been shown that the basal levels of UCP1 in human brown fat is not as enriched as that in rodents under thermoneutral conditions (Wu et al. 2012). Moreover, rodent brown and beige fat are physically apart from each other, while they are mixed in humans (Xue et al. 2005, Xue et al. 2007, Sharp et al. 2012, Cypess et al. 2013). The SNS plays a predominant role in cold-induced thermogenesis and browning of white fat by releasing norepinephrine (NE). Upon cold, feeding or stress exposure, NE is produced and released from sympathetic fibres innervated in adipose tissue to bind to β3-adrenoceptor on the cell surface of adipocytes (Ueta et al. 2012). This binding results in activation of cAMP/protein kinase A (PKA) pathway which induces lipolysis and thermogenic genes expression and substantially activates brown and beige adipocytes (Cao et al. 2004b, Ye et al. 2013). In adult humans, BAT activation by prolonged cold exposure appears to increase lipid mobilization from other fat depots to BAT and promotes lipid burning through heat production in mitochondria (Chondronikola et al. 2016). Brown and beige fat not only maintains energy balance through non-shivering thermogenesis but also promotes glucose uptake and TGs clearance from the circulation (Bartelt et al. 2011). In line with this, ablation of UCP1 results in disruption of diet-induced thermogenesis and exacerbation of diet-induced obesity in mice exempt from thermal stress by living at thermoneutrality (Feldmann et al. 2009). Furthermore, the implantation of human beige adipocyte acquired from beige progenitors into high-fat diet (HFD)-fed mice improves systemic glucose tolerance (Min et al. 2016).

The therapeutic potential of brown and beige fat for the treatment of obesity and diabetes

Accumulating data has shown that activation of brown and beige adipocytes protects against obesity and related metabolic diseases in rodents (Kopecky et al. 1995, Cederberg et al. 2001, Seale et al. 2011). Consistent with this, administration of β3-adrenergic agonist, CL 316,243 that mimics cold stress induces WAT browning and improves obesity-induced metabolic dysregulation in rodents (Ghorbani & Himms-Hagen 1997, Guerra et al. 1998). Although BAT was primarily found in infants (Lidell et al. 2013), it was unknown whether adult humans possess brown fat until Dr Spiegelman, Kahn, Teule and Nuutila groups identified brown fat in adult humans with PET-CT in 2009 (Cypess et al. 2009, van Marken Lichtenbelt et al. 2009, Virtanen et al. 2009). Nowadays, the BAT has been shown to exist in humans at various ages (Gilsanz et al. 2013). The following studies show that BAT is inversely correlated with body mass index, decreased during ageing and induced upon cold stimulation (Cypess et al. 2009, Lee et al. 2010, Pfannenberg et al. 2010, Jacene et al. 2011, Cypess et al. 2014). Unlike rodent beige adipocytes physically separated from brown adipocytes, adult human brown adipocytes are found together with beige and white adipocytes (Sharp et al. 2012, Wu et al. 2012, Lidell et al. 2013). Despite this, the activated human brown and beige adipocytes have a therapeutic potential against obesity and diabetes.

The inducible characteristics of human brown adipocytes under cold exposure make them the promising therapeutic targets for the treatment of obesity and type 2 diabetes. Cold training has been studied as a viable anti-obesity therapeutic. It has been shown that mild cold exposure is sufficient to increase human BAT activity and energy expenditure, and prolonged (5–8 h) cold exposure in BAT-positive individuals significantly increases resting energy expenditure, whole-body glucose metabolism and insulin sensitivity (Chen et al. 2013, Chondronikola et al. 2014). Moreover, BAT recruitment by repeated cold exposure or daily ingestion of capsinoids increases energy expenditure and decreases body fat mass in healthy individuals who have lower BAT activity originally compared with control subjects (Yoneshiro et al. 2013). These findings again suggest the potential role of human BAT in the prevention and treatment of obesity. In addition, administration of β3-adrenoceptor agonists also activates BAT and promotes energy expenditure both in humans and rodents despite low efficacy in humans compared with rodents (Cannon & Nedergaard 2004, Cypess et al. 2012, Carey et al. 2013, van der Lans et al. 2013). However, traditional β3-adrenoceptor agonists such as CL316,243, L-796568 and TAK-677 were not approved for use in clinical trials due to multiple side effects including the increased heart rate (Arch 2011, Cypess et al. 2015). Mirabegron, a new class of β3-adrenoceptor agonists approved for the treatment of overactive bladder, has been shown to promote human BAT thermogenesis with great therapeutic potential (Cypess et al. 2015). Recent studies have also shown that BAT transplantation corrects metabolic phenotypes, and improves type 1 diabetes in streptozotocin-treated mice as well as HFD-induced insulin resistance in mice (Gunawardana & Piston 2012, Stanford et al. 2013). Consistently, implantation of human beige adipocytes improves systemic glucose tolerance in HFD-induced glucose-intolerant mice (Min et al. 2016). Given that preadipocytes or stem cells are also able to be differentiated into mature brown or beige adipocytes, brown or beige adipocytes transplantation may offer a practicable means for the treatment of obesity and diabetes (Bayindir et al. 2015). Therefore, understanding the nature and expansion of human brown or beige adipocytes is urgently needed for BAT-based therapeutics in the future.

Regulation of non-shivering thermogenesis

Thermogenesis and browning of WAT are predominately controlled through SNS (Himms-Hagen et al. 1994, Murano et al. 2009, Richard et al. 2012, Bi & Li 2013) (Fig. 3). Central nervous system (CNS), especially hypothalamic neurons project to the SNS and drive sympathetic outflows to adipose tissue to modulate adaptive thermogenesis (Bamshad et al. 1999, Cano et al. 2003). Several specific hypothalamic areas or neural circuitries within the hypothalamus have been shown to exert thermoregulation through modulating the activity of SNS (Oldfield et al. 2002, Cao et al. 2004b, Contreras et al. 2015). In line with this, NPY/AgRP signalling derived from the arcuate nucleus (Arc) inhibits sympathetically innervated BAT thermogenesis through regulation of tyrosine hydroxylase neurons in the hypothalamic paraventricular nucleus (PVN), while alpha-melanocyte-stimulating hormone (α-MSH) from POMC neurons increases SNS activity and BAT thermogenesis (Yasuda et al. 2004, Shi et al. 2013). Furthermore, Ruan et al. reported that O-GlcNAc transferase (OGT), a rate-limiting enzyme for O-linked β-N-acetylglucosamine (O-GlcNAc) modification of cytoplasmic and nuclear proteins, suppresses browning of WAT and thermogenesis by regulating neuronal excitability in AgRP neurons (Ruan et al. 2014). In addition to sympathetic neurons, serotonin (5-HT) neurons were recently reported to recruit and activate brown and beige adipocytes and subsequently regulate glucose and lipid homeostasis (McGlashon et al. 2015). These findings strongly suggest that CNS plays a critical role in sensing cold, feeding and stress and regulating adaptive thermogenesis through SNS. However, the adverse cardiovascular effects of SNS activation have raised a concern for its therapeutic purpose for the treatment of obesity and its associated diseases.

Figure 3
Figure 3

The regulation of adaptive thermogenesis. Thermogenic programme and browning of WAT are driven by SNS in response to cold, diet and stress. Several hormones such as insulin, leptin, BMP8B, GLP-1 and T3 control adaptive thermogenesis through regulating SNS. Moreover, several key transcription factors such as PRDM16, PGC1α, PPARγ, C/EBPβ and IRF4 assemble to form the transitional machinery of UCP1 and promote UCP1 expression. In addition, adaptive thermogenesis has been shown to be regulated by multiple secreted factors including BMP8B, Slit2, BMP7, vitamin A derivatives, VEGF, T3, bile acids, FGF21, irisin, NPs, enkephalin and macrophages-derived catecholamine. In addition, HDAC1 and miRNAs as well as other intracellular pathways such as p38MAPK, mTORC1, Grb10, MR and TASK1 play important roles in regulating thermogenic program. Double arrow means secretion from adipocytes and in turn action on itself. ADR, adrenergic receptor; MR, mineralocorticoid receptor; NPs, natriuretic peptides; TASK1, Twik-related acid-sensitive K (+) channel; 5-HT, 5-hydroxytryptamine or serotonin neurons.

Citation: Journal of Endocrinology 231, 3; 10.1530/JOE-16-0211

Given that UCP1 is the key marker for browning of WAT and thermogenesis, concerted effort has been focusing on the understanding of the transcriptional regulation of UCP1 expression in the past decade. Several transcriptional factors including PRDM16, PGC1α, PPARγ, C/EBPβ and interferon regulator factor 4 (IRF4) have been discovered to promote UCP1 expression (Kelly et al. 1998, Barbera et al. 2001, Seale et al. 2007, Kajimura et al. 2009, Kong et al. 2014) (Fig. 3). PRDM16 drives the cell fate switching from skeletal myoblasts to brown adipocytes and initiates brown adipocyte differentiation by binding to PPARγ and PGC1α and β (Seale et al. 2008). Interestingly, PRDM16 is an important factor for thermogenic program, while it is dispensable for brown fat development (Seale et al. 2011, Harms et al. 2014). Kajimura and coworkers also showed that formation of PRDM16/C/EBPβ complex is required for the activation of thermogenic program and induction of PPARγ, PGC1α and UCP1 expression (Kajimura et al. 2009). In support of this, gain- and loss-of-function studies have demonstrated a cell-autonomous and determinant role of PRDM16 in regulating thermogenic programing and the browning effect in subcutaneous adipose tissues, indicating the importance of PRDM16 in driving thermogenic programing (Seale et al. 2011, Cohen et al. 2014). On the other hand, PGC1α is induced upon cold exposure and modulates the expression of thermogenic markers such as UCP1 (Kleiner et al. 2012). Consistent with this, PGC1α is upregulated by FGF21 and mediates the prompting effect of FGF21 on browning of WAT (Fisher et al. 2012). Moreover, IRF4 as the key thermogenic transcriptional partner of PGC1α promotes thermogenic genes expression and energy expenditure, suggesting the key role of PGC1α in regulating thermogenesis and WAT browning (Kong et al. 2014). Furthermore, several other intracellular pathways including p38MAPK, mTORC1, Grb10, mineralocorticoid receptor (MR), and K (+) channel TASK1 have been shown to modulate thermogenic gene expression, browning of WAT and/or lipolysis through β3-adrenoceptor-dependent or independent mechanisms (Cao et al. 2004a, Bordicchia et al. 2012, Armani et al. 2014, Liu et al. 2014, Liu et al. 2016, Pisani et al. 2016) (Fig. 3). More studies are needed to further determine whether the modulation of WAT browning by these pathways is intrinsic or secondary effects.

In addition, several circulating factors such as insulin, leptin and GLP-1 have been identified to promote thermogenesis through targeting hypothalamus neurons and regulating activity of SNS (Shimizu et al. 1987, Rahmouni & Morgan 2007, Sanchez-Alavez et al. 2010, Harlan et al. 2011, Lockie et al. 2012, Beiroa et al. 2014, Dodd et al. 2015) (Fig. 3). Furthermore, central-derived factors also play important roles in regulating SNS activity and thermogenesis (Fig. 3). Hypothalamic BDNF enhances thermogenesis and energy expenditure by acting on PVN and VMH neurons, while NPY in the dorsomedial hypothalamus (DMH) promotes WAT browning and BAT activity leading to increase of energy expenditure (Wang et al. 2007, Wang et al. 2010, Chao et al. 2011). BMP8B as a factor derived from the hypothalamus promotes energy balance and thermogenesis through activation of AMPK in the key hypothalamic nuclei and subsequent stimulation of sympathetic tone (Whittle et al. 2012). Notably, BMP8B is also produced in BAT and enhances norepinephrine action by regulating p38MAPK/CREB pathway (Whittle et al. 2012). However, which type of cells produces BMP8B in BAT is undetermined. Myokine irisin, encoded by fndc5 gene, is induced by exercise, promotes browning of WAT by increasing beige adipocyte differentiation and UCP1 expression, and augments brown fat thermogenesis in concert with FGF21 in humans upon cold exposure (Bostrom et al. 2012, Lee et al. 2014a, Jedrychowski et al. 2015). However, the induction of irisin by exercise occurs only in a minority of human subjects (Timmons et al. 2012, Pekkala et al. 2013). Therefore, the role of irisin in regulating metabolism has been questioned. Moreover, multiple secreted factors from adipose and other tissues including Slit2, BMP7, Vitamin A derivatives, VEGF, prostaglandins, bile acids, FGF21, natriuretic peptides, catecholamine, enkephalin, and thyroid hormone (triiodothyronine, T3), and intracellular modulators such as Histone Deacetylase 1 (HDAC1) and miRNAs have been identified to regulate thermogenic programing (Watanabe et al. 2006, Tseng et al. 2008, Thomas et al. 2009, Lopez et al. 2010, Nguyen et al. 2011, Bordicchia et al. 2012, Fisher et al. 2012, Kiefer et al. 2012, Bagchi et al. 2013, Sun et al. 2014, Brestoff et al. 2015, Park et al. 2015, Li et al. 2016, Svensson et al. 2016) (Fig. 3). However, whether β3-adrenoceptor/PKA signalling pathway mediates the effect of these factors on thermogenic program remains largely unknown.

Conclusions

Adipose tissue plays a major role in the regulation of systemic metabolic homeostasis via its profound effects on energy storage, endocrine function and adaptive thermogenesis. The dysfunction of adipose tissue as a causal factor is linked to obesity and its related disorders. Therefore, understanding adipose tissue biology and pathology is of great importance for the identification of novel and potential therapeutic targets for the prevention and treatment of obesity-related disorders. In particular, enormous evidence of newly discovered endocrine and thermogenic function of adipose tissue strongly suggests that selectively targeting adipose tissue as the therapeutic approach is feasible and practicable. Supportively, multiple adipokines have been found to be potential therapeutic targets. The deficient mice of adipokine leptin (ob/ob) and leptin receptor (db/db) have been widely used in the obesity and diabetes research as well as in other fields. Moreover, accumulating studies in rodents have demonstrated that leptin-based therapy may be a promising strategy for the prevention and treatment of obesity, whereas further research is needed to determine if leptin gene therapy is safe and effective in humans. Furthermore, adiponectin has great potential as a therapeutic target for a variety of obesity-associated diseases. However, preclinical manipulation of circulating adiponectin has been quite challenging due to its complicated multimeric structure and high circulating level at about roughly 3 orders of magnitude greater than most other hormones in humans. Although brown and beige fat have provided another therapeutic approach for the treatment of obesity, the efficacy of β3-adrenoceptor agonists in humans is relatively lower than that in rodents. Therefore, future studies focusing on adipokines and thermogenesis regulation will be urgently needed for adipose tissue-related therapeutic purpose.

Declaration of interest

The authors declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of this review.

Funding

This work did not receive any specific grant from any funding agency in the public, commercial, or not-for-profit sector.

Acknowledgements

This work was supported in part by Junior Faculty Research Award (1-13-JF-37 to M L) from the American Diabetes Association, Grant in Aid Award (#15GRNT24940018 to M L) from American Heart Association, and CoBRE Pilot Award associated with P30 (P30GM103400 (PI: J Liu)) (to M L) and RAC Pilot Awards (to M L) at the University of New Mexico Health Sciences Center. We thank Dr Jesse Denson at the UNMHSC for editing this manuscript.

References

  • Adams AC, Coskun T, Cheng CC, LS OF, Dubois SL & Kharitonenkov A 2013 Fibroblast growth factor 21 is not required for the antidiabetic actions of the thiazoladinediones. Molecular Metabolism 2 205214. (doi:10.1016/j.molmet.2013.05.005)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Aherne W & Hull D 1966 Brown adipose tissue and heat production in the newborn infant. Journal of Pathology and Bacteriology 91 223234. (doi:10.1002/path.1700910126)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Ahmadian M, Abbott MJ, Tang T, Hudak CS, Kim Y, Bruss M, Hellerstein MK, Lee HY, Samuel VT & Shulman GI et al. 2011 Desnutrin/ATGL is regulated by AMPK and is required for a brown adipose phenotype. Cell Metabolism 13 739748. (doi:10.1016/j.cmet.2011.05.002)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Ali AT, Hochfeld WE, Myburgh R & Pepper MS 2013 Adipocyte and adipogenesis. European Journal of Cell Biology 92 229236. (doi:10.1016/j.ejcb.2013.06.001)

  • Andrade-Oliveira V, Camara NO & Moraes-Vieira PM 2015 Adipokines as drug targets in diabetes and underlying disturbances. Journal of Diabetes Research 2015 681612. (doi:10.1155/2015/681612)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Arch JR 2011 Challenges in beta(3)-adrenoceptor agonist drug development. Therapeutic Advances in Endocrinology and Metabolism 2 5964. (doi:10.1177/2042018811398517)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Armani A, Cinti F, Marzolla V, Morgan J, Cranston GA, Antelmi A, Carpinelli G, Canese R, Pagotto U & Quarta C et al. 2014 Mineralocorticoid receptor antagonism induces browning of white adipose tissue through impairment of autophagy and prevents adipocyte dysfunction in high-fat-diet-fed mice. FASEB Journal 28 37453757. (doi:10.1096/fj.13-245415)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Arvaniti K, Huang Q & Richard D 2001 Effects of leptin and corticosterone on the expression of corticotropin-releasing hormone, agouti-related protein, and proopiomelanocortin in the brain of ob/ob mouse. Neuroendocrinology 73 227236. (doi:10.1159/000054639)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Assimacopoulos-Jeannet F, Brichard S, Rencurel F, Cusin I & Jeanrenaud B 1995 In vivo effects of hyperinsulinemia on lipogenic enzymes and glucose transporter expression in rat liver and adipose tissues. Metabolism 44 228233. (doi:10.1016/0026-0495(95)90270-8)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Awazawa M, Ueki K, Inabe K, Yamauchi T, Kubota N, Kaneko K, Kobayashi M, Iwane A, Sasako T & Okazaki Y et al. 2011 Adiponectin enhances insulin sensitivity by increasing hepatic IRS-2 expression via a macrophage-derived IL-6-dependent pathway. Cell Metabolism 13 401412. (doi:10.1016/j.cmet.2011.02.010)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Bado A, Levasseur S, Attoub S, Kermorgant S, Laigneau JP, Bortoluzzi MN, Moizo L, Lehy T, Guerre-Millo M & Le Marchand-Brustel Y et al. 1998 The stomach is a source of leptin. Nature 394 790793. (doi:10.1038/29547)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Bagchi M, Kim LA, Boucher J, Walshe TE, Kahn CR & D’Amore PA 2013 Vascular endothelial growth factor is important for brown adipose tissue development and maintenance. FASEB Journal 27 32573271. (doi:10.1096/fj.12-221812)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Bamshad M, Song CK & Bartness TJ 1999 CNS origins of the sympathetic nervous system outflow to brown adipose tissue. American Journal of Physiology 276 R1569R1578.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Barbatelli G, Murano I, Madsen L, Hao Q, Jimenez M, Kristiansen K, Giacobino JP, De Matteis R & Cinti S 2010 The emergence of cold-induced brown adipocytes in mouse white fat depots is determined predominantly by white to brown adipocyte transdifferentiation. American Journal of Physiology: Endocrinology and Metabolism 298 E1244E1253. (doi:10.1152/ajpendo.00600.2009)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Barbera MJ, Schluter A, Pedraza N, Iglesias R, Villarroya F & Giralt M 2001 Peroxisome proliferator-activated receptor alpha activates transcription of the brown fat uncoupling protein-1 gene. A link between regulation of the thermogenic and lipid oxidation pathways in the brown fat cell. Journal of Biological Chemistry 276 14861493. (doi:10.1074/jbc.M006246200)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Barneda D, Planas-Iglesias J, Gaspar ML, Mohammadyani D, Prasannan S, Dormann D, Han GS, Jesch SA, Carman GM & Kagan V et al. 2015 The brown adipocyte protein CIDEA promotes lipid droplet fusion via a phosphatidic acid-binding amphipathic helix. eLife 4 e07485. (doi:10.7554/elife.07485)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Bartelt A, Bruns OT, Reimer R, Hohenberg H, Ittrich H, Peldschus K, Kaul MG, Tromsdorf UI, Weller H & Waurisch C et al. 2011 Brown adipose tissue activity controls triglyceride clearance. Nature Medicine 17 200205. (doi:10.1038/nm.2297)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Bartness TJ, Vaughan CH & Song CK 2010 Sympathetic and sensory innervation of brown adipose tissue. International Journal of Obesity 34 (Supplement 1) S36S42. (doi:10.1038/ijo.2010.182)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Bayindir I, Babaeikelishomi R, Kocanova S, Sousa IS, Lerch S, Hardt O, Wild S, Bosio A, Bystricky K & Herzig S et al. 2015 Transcriptional pathways in cPGI2-induced adipocyte progenitor activation for browning. Frontiers in Endocrinology 6 129. (doi:10.3389/fendo.2015.00129)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Beiroa D, Imbernon M, Gallego R, Senra A, Herranz D, Villarroya F, Serrano M, Ferno J, Salvador J & Escalada J et al. 2014 GLP-1 agonism stimulates brown adipose tissue thermogenesis and browning through hypothalamic AMPK. Diabetes 63 33463358. (doi:10.2337/db14-0302)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Benomar Y, Amine H, Crepin D, Al Rifai S, Riffault L, Gertler A & Taouis M 2016 Central resistin/TLR4 impairs adiponectin signaling contributing to insulin and FGF21 resistance. Diabetes 65 913926. (doi:10.2337/db15-1029)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Berry DC, Stenesen D, Zeve D & Graff JM 2013 The developmental origins of adipose tissue. Development 140 39393949. (doi:10.1242/dev.080549)

  • Bi S & Li L 2013 Browning of white adipose tissue: role of hypothalamic signaling. Annals of the New York Academy of Sciences 1302 3034. (doi:10.1111/nyas.12258)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Birnbaum MJ 2003 Lipolysis: more than just a lipase. Journal of Cell Biology 161 10111012. (doi:10.1083/jcb.200306008)

  • Blaza S 1983 Brown adipose tissue in man: a review. Journal of the Royal Society of Medicine 76 213216.

  • Bluher M 2014 Adipokines – removing road blocks to obesity and diabetes therapy. Molecular Metabolism 3 230240. (doi:10.1016/j.molmet.2014.01.005)

  • Bluher M & Mantzoros CS 2015 From leptin to other adipokines in health and disease: facts and expectations at the beginning of the 21st century. Metabolism 64 131145. (doi:10.1016/j.metabol.2014.10.016)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Bordicchia M, Liu D, Amri EZ, Ailhaud G, Dessi-Fulgheri P, Zhang C, Takahashi N, Sarzani R & Collins S 2012 Cardiac natriuretic peptides act via p38 MAPK to induce the brown fat thermogenic program in mouse and human adipocytes. Journal of Clinical Investigation 122 10221036. (doi:10.1172/JCI59701)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Bostrom P, Wu J, Jedrychowski MP, Korde A, Ye L, Lo JC, Rasbach KA, Bostrom EA, Choi JH & Long JZ et al. 2012 A PGC1-alpha-dependent myokine that drives brown-fat-like development of white fat and thermogenesis. Nature 481 463468. (doi:10.1038/nature10777)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Boucher J, Masri B, Daviaud D, Gesta S, Guigne C, Mazzucotelli A, Castan-Laurell I, Tack I, Knibiehler B & Carpene C et al. 2005 Apelin, a newly identified adipokine up-regulated by insulin and obesity. Endocrinology 146 17641771. (doi:10.1210/en.2004-1427)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Brasaemle DL 2007 Thematic review series: adipocyte biology. The perilipin family of structural lipid droplet proteins: stabilization of lipid droplets and control of lipolysis. Journal of Lipid Research 48 25472559. (doi:10.1194/jlr.R700014-JLR200)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Brestoff JR, Kim BS, Saenz SA, Stine RR, Monticelli LA, Sonnenberg GF, Thome JJ, Farber DL, Lutfy K & Seale P et al. 2015 Group 2 innate lymphoid cells promote beiging of white adipose tissue and limit obesity. Nature 519 242246. (doi:10.1038/nature14115)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Cannon B & Nedergaard J 2004 Brown adipose tissue: function and physiological significance. Physiological Reviews 84 277359. (doi:10.1152/physrev.00015.2003)

  • Cano G, Passerin AM, Schiltz JC, Card JP, Morrison SF & Sved AF 2003 Anatomical substrates for the central control of sympathetic outflow to interscapular adipose tissue during cold exposure. Journal of Comparative Neurology 460 303326. (doi:10.1002/cne.10643)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Cao W, Daniel KW, Robidoux J, Puigserver P, Medvedev AV, Bai X, Floering LM, Spiegelman BM & Collins S 2004a p38 mitogen-activated protein kinase is the central regulator of cyclic AMP-dependent transcription of the brown fat uncoupling protein 1 gene. Molecular and Cellular Biology 24 30573067. (doi:10.1128/MCB.24.7.3057-3067.2004)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Cao WH, Fan W & Morrison SF 2004b Medullary pathways mediating specific sympathetic responses to activation of dorsomedial hypothalamus. Neuroscience 126 229240. (doi:10.1016/j.neuroscience.2004.03.013)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Carey AL, Formosa MF, Van Every B, Bertovic D, Eikelis N, Lambert GW, Kalff V, Duffy SJ, Cherk MH & Kingwell BA 2013 Ephedrine activates brown adipose tissue in lean but not obese humans. Diabetologia 56 147155. (doi:10.1007/s00125-012-2748-1)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Carmen GY & Victor SM 2006 Signalling mechanisms regulating lipolysis. Cellular Signalling 18 401408. (doi:10.1016/j.cellsig.2005.08.009)

  • Caro JF, Sinha MK, Kolaczynski JW, Zhang PL & Considine RV 1996 Leptin: the tale of an obesity gene. Diabetes 45 14551462. (doi:10.2337/diab.45.11.1455)

  • Cederberg A, Gronning LM, Ahren B, Tasken K, Carlsson P & Enerback S 2001 FOXC2 is a winged helix gene that counteracts obesity, hypertriglyceridemia, and diet-induced insulin resistance. Cell 106 563573. (doi:10.1016/S0092-8674(01)00474-3)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Chao PT, Yang L, Aja S, Moran TH & Bi S 2011 Knockdown of NPY expression in the dorsomedial hypothalamus promotes development of brown adipocytes and prevents diet-induced obesity. Cell Metabolism 13 573583. (doi:10.1016/j.cmet.2011.02.019)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Chau YY, Bandiera R, Serrels A, Martinez-Estrada OM, Qing W, Lee M, Slight J, Thornburn A, Berry R & McHaffie S et al. 2014 Visceral and subcutaneous fat have different origins and evidence supports a mesothelial source. Nature Cell Biology 16 367375. (doi:10.1038/ncb2922)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Chen KY, Brychta RJ, Linderman JD, Smith S, Courville A, Dieckmann W, Herscovitch P, Millo CM, Remaley A & Lee P et al. 2013 Brown fat activation mediates cold-induced thermogenesis in adult humans in response to a mild decrease in ambient temperature. Journal of Clinical Endocrinology and Metabolism 98 E12181223. (doi:10.1210/jc.2012-4213)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Chen WW, Li L, Yang GY, Li K, Qi XY, Zhu W, Tang Y, Liu H & Boden G 2008 Circulating FGF-21 levels in normal subjects and in newly diagnose patients with Type 2 diabetes mellitus. Experimental and Clinical Endocrinology and Diabetes 116 6568. (doi:10.1055/s-2007-985148)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Cho YW, Hong S, Jin Q, Wang L, Lee JE, Gavrilova O & Ge K 2009 Histone methylation regulator PTIP is required for PPARgamma and C/EBPalpha expression and adipogenesis. Cell Metabolism 10 2739. (doi:10.1016/j.cmet.2009.05.010)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Chondronikola M, Volpi E, Borsheim E, Porter C, Annamalai P, Enerback S, Lidell ME, Saraf MK, Labbe SM & Hurren NM et al. 2014 Brown adipose tissue improves whole-body glucose homeostasis and insulin sensitivity in humans. Diabetes 63 40894099. (doi:10.2337/db14-0746)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Chondronikola M, Volpi E, Borsheim E, Porter C, Saraf MK, Annamalai P, Yfanti C, Chao T, Wong D & Shinoda K et al. 2016 Brown adipose tissue activation is linked to distinct systemic effects on lipid metabolism in humans. Cell Metabolism 23 12001206. (doi:10.1016/j.cmet.2016.04.029)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Chou K & Perry CM 2013 Metreleptin: first global approval. Drugs 73 989997. (doi:10.1007/s40265-013-0074-7)

  • Choy L & Derynck R 2003 Transforming growth factor-beta inhibits adipocyte differentiation by Smad3 interacting with CCAAT/enhancer-binding protein (C/EBP) and repressing C/EBP transactivation function. Journal of Biological Chemistry 278 96099619. (doi:10.1074/jbc.M212259200)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Cleasby ME, Lau Q, Polkinghorne E, Patel SA, Leslie SJ, Turner N, Cooney GJ, Xu A & Kraegen EW 2011 The adaptor protein APPL1 increases glycogen accumulation in rat skeletal muscle through activation of the PI3-kinase signalling pathway. Journal of Endocrinology 210 8192. (doi:10.1530/JOE-11-0039)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Cohen P, Levy JD, Zhang Y, Frontini A, Kolodin DP, Svensson KJ, Lo JC, Zeng X, Ye L & Khandekar MJ et al. 2014 Ablation of PRDM16 and beige adipose causes metabolic dysfunction and a subcutaneous to visceral fat switch. Cell 156 304316. (doi:10.1016/j.cell.2013.12.021)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Coleman DL 1978 Obese and diabetes: two mutant genes causing diabetes-obesity syndromes in mice. Diabetologia 14 141148. (doi:10.1007/BF00429772)

  • Combs TP, Pajvani UB, Berg AH, Lin Y, Jelicks LA, Laplante M, Nawrocki AR, Rajala MW, Parlow AF & Cheeseboro L et al. 2004 A transgenic mouse with a deletion in the collagenous domain of adiponectin displays elevated circulating adiponectin and improved insulin sensitivity. Endocrinology 145 367383. (doi:10.1210/en.2003-1068)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Contreras C, Gonzalez F, Ferno J, Dieguez C, Rahmouni K, Nogueiras R & Lopez M 2015 The brain and brown fat. Annals of Medicine 47 150168. (doi:10.3109/07853890.2014.919727)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Cousin B, Cinti S, Morroni M, Raimbault S, Ricquier D, Penicaud L & Casteilla L 1992 Occurrence of brown adipocytes in rat white adipose tissue: molecular and morphological characterization. Journal of Cell Science 103 931942.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Curat CA, Wegner V, Sengenes C, Miranville A, Tonus C, Busse R & Bouloumie A 2006 Macrophages in human visceral adipose tissue: increased accumulation in obesity and a source of resistin and visfatin. Diabetologia 49 744747. (doi:10.1007/s00125-006-0173-z)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Cypess AM, Chen YC, Sze C, Wang K, English J, Chan O, Holman AR, Tal I, Palmer MR & Kolodny GM et al. 2012 Cold but not sympathomimetics activates human brown adipose tissue in vivo. PNAS 109 1000110005. (doi:10.1073/pnas.1207911109)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Cypess AM, Haft CR, Laughlin MR & Hu HH 2014 Brown fat in humans: consensus points and experimental guidelines. Cell Metabolism 20 408415. (doi:10.1016/j.cmet.2014.07.025)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Cypess AM, Lehman S, Williams G, Tal I, Rodman D, Goldfine AB, Kuo FC, Palmer EL, Tseng YH & Doria A et al. 2009 Identification and importance of brown adipose tissue in adult humans. New England Journal of Medicine 360 15091517. (doi:10.1056/NEJMoa0810780)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Cypess AM, Weiner LS, Roberts-Toler C, Franquet Elia E, Kessler SH, Kahn PA, English J, Chatman K, Trauger SA & Doria A et al. 2015 Activation of human brown adipose tissue by a beta3-adrenergic receptor agonist. Cell Metabolism 21 3338. (doi:10.1016/j.cmet.2014.12.009)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Cypess AM, White AP, Vernochet C, Schulz TJ, Xue R, Sass CA, Huang TL, Roberts-Toler C, Weiner LS & Sze C et al. 2013 Anatomical localization, gene expression profiling and functional characterization of adult human neck brown fat. Nature Medicine 19 635639. (doi:10.1038/nm.3112)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • de Jong JM, Larsson O, Cannon B & Nedergaard J 2015 A stringent validation of mouse adipose tissue identity markers. American Journal of Physiology: Endocrinology and Metabolism 308 E1085E1105. (doi:10.1152/ajpendo.00023.2015)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Degawa-Yamauchi M, Bovenkerk JE, Juliar BE, Watson W, Kerr K, Jones R, Zhu Q & Considine RV 2003 Serum resistin (FIZZ3) protein is increased in obese humans. Journal of Clinical Endocrinology and Metabolism 88 54525455. (doi:10.1210/jc.2002-021808)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Deng Y & Scherer PE 2010 Adipokines as novel biomarkers and regulators of the metabolic syndrome. Annals of the New York Academy of Sciences 1212 E1E19. (doi:10.1111/j.1749-6632.2010.05875.x)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Denzel MS, Scimia MC, Zumstein PM, Walsh K, Ruiz-Lozano P & Ranscht B 2010 T-cadherin is critical for adiponectin-mediated cardioprotection in mice. Journal of Clinical Investigation 120 43424352. (doi:10.1172/JCI43464)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • DePaoli AM, Higgins LS, Henry RR, Mantzoros C, Dunn FL & Group INTS 2014 Can a selective PPARgamma modulator improve glycemic control in patients with type 2 diabetes with fewer side effects compared with pioglitazone? Diabetes Care 37 19181923. (doi:10.2337/dc13-2480)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Dieguez C, Vazquez MJ, Romero A, Lopez M & Nogueiras R 2011 Hypothalamic control of lipid metabolism: focus on leptin, ghrelin and melanocortins. Neuroendocrinology 94 111. (doi:10.1159/000328122)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Dijk W, Beigneux AP, Larsson M, Bensadoun A, Young SG & Kersten S 2016 Angiopoietin-like 4 (ANGPTL4) promotes intracellular degradation of lipoprotein lipase in adipocytes. Journal of Lipid Research 57 16701683. (doi:10.1194/jlr.M067363)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Dimitriadis G, Mitrou P, Lambadiari V, Maratou E & Raptis SA 2011 Insulin effects in muscle and adipose tissue. Diabetes Research and Clinical Practice 93 (Supplement 1) S52S59. (doi:10.1016/S0168-8227(11)70014-6)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Dodd GT, Decherf S, Loh K, Simonds SE, Wiede F, Balland E, Merry TL, Munzberg H, Zhang ZY & Kahn BB et al. 2015 Leptin and insulin act on POMC neurons to promote the browning of white fat. Cell 160 88104. (doi:10.1016/j.cell.2014.12.022)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Doring H, Schwarzer K, Nuesslein-Hildesheim B & Schmidt I 1998 Leptin selectively increases energy expenditure of food-restricted lean mice. International Journal of Obesity and Related Metabolic Disorders 22 8388. (doi:10.1038/sj.ijo.0800547)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Eissing L, Scherer T, Todter K, Knippschild U, Greve JW, Buurman WA, Pinnschmidt HO, Rensen SS, Wolf AM & Bartelt A et al. 2013 De novo lipogenesis in human fat and liver is linked to ChREBP-beta and metabolic health. Nature Communications 4 1528. (doi:10.1038/ncomms2537)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • El-Jack AK, Hamm JK, Pilch PF & Farmer SR 1999 Reconstitution of insulin-sensitive glucose transport in fibroblasts requires expression of both PPARgamma and C/EBPalpha. Journal of Biological Chemistry 274 79467951. (doi:10.1074/jbc.274.12.7946)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Emanuelli B, Vienberg SG, Smyth G, Cheng C, Stanford KI, Arumugam M, Michael MD, Adams AC, Kharitonenkov A & Kahn CR 2014 Interplay between FGF21 and insulin action in the liver regulates metabolism. Journal of Clinical Investigation 124 515527. (doi:10.1172/JCI67353)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Etherton TD 2000 The biology of somatotropin in adipose tissue growth and nutrient partitioning. Journal of Nutrition 130 26232625.

  • Fabbrini E, Tamboli RA, Magkos F, Marks-Shulman PA, Eckhauser AW, Richards WO, Klein S & Abumrad NN 2010 Surgical removal of omental fat does not improve insulin sensitivity and cardiovascular risk factors in obese adults. Gastroenterology 139 448455. (doi:10.1053/j.gastro.2010.04.056)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Fang X, Palanivel R, Cresser J, Schram K, Ganguly R, Thong FS, Tuinei J, Xu A, Abel ED & Sweeney G 2010 An APPL1-AMPK signaling axis mediates beneficial metabolic effects of adiponectin in the heart. American Journal of Physiology: Endocrinology and Metabolism 299 E721E729. (doi:10.1152/ajpendo.00086.2010)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Farmer SR 2005 Regulation of PPARgamma activity during adipogenesis. International Journal of Obesity 29 (Supplement 1) S13S16. (doi:10.1038/sj.ijo.0802907)

  • Farmer SR 2006 Transcriptional control of adipocyte formation. Cell Metabolism 4 263273. (doi:10.1016/j.cmet.2006.07.001)

  • Farooqi IS, Jebb SA, Langmack G, Lawrence E, Cheetham CH, Prentice AM, Hughes IA, McCamish MA & O’Rahilly S 1999 Effects of recombinant leptin therapy in a child with congenital leptin deficiency. New England Journal of Medicine 341 879884. (doi:10.1056/NEJM199909163411204)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Fasshauer M & Bluher M 2015 Adipokines in health and disease. Trends in Pharmacological Sciences 36 461470. (doi:10.1016/j.tips.2015.04.014)

  • Fedorenko A, Lishko PV & Kirichok Y 2012 Mechanism of fatty-acid-dependent UCP1 uncoupling in brown fat mitochondria. Cell 151 400413. (doi:10.1016/j.cell.2012.09.010)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Feldmann HM, Golozoubova V, Cannon B & Nedergaard J 2009 UCP1 ablation induces obesity and abolishes diet-induced thermogenesis in mice exempt from thermal stress by living at thermoneutrality. Cell Metabolism 9 203209. (doi:10.1016/j.cmet.2008.12.014)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Ferre P & Foufelle F 2007 SREBP-1c transcription factor and lipid homeostasis: clinical perspective. Hormone Research 68 7282. (doi:10.1159/000100426)

  • Fielding BA & Frayn KN 1998 Lipoprotein lipase and the disposition of dietary fatty acids. British Journal of Nutrition 80 495502.

  • Filippidis G, Liakopoulos V, Mertens PR, Kiropoulos T, Stakias N, Verikouki C, Patsidis E, Koukoulis G & Stefanidis I 2005 Resistin serum levels are increased but not correlated with insulin resistance in chronic hemodialysis patients. Blood Purification 23 421428. (doi:10.1159/000088017)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Fischer AW, Hoefig CS, Abreu-Vieira G, de Jong JM, Petrovic N, Mittag J, Cannon B & Nedergaard J 2016 Leptin raises defended body temperature without activating thermogenesis. Cell Reports 14 16211631. (doi:10.1016/j.celrep.2016.01.041)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Fisher FM, Kleiner S, Douris N, Fox EC, Mepani RJ, Verdeguer F, Wu J, Kharitonenkov A, Flier JS & Maratos-Flier E et al. 2012 FGF21 regulates PGC-1alpha and browning of white adipose tissues in adaptive thermogenesis. Genes and Development 26 271281. (doi:10.1101/gad.177857.111)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Foltz IN, Hu S, King C, Wu X, Yang C, Wang W, Weiszmann J, Stevens J, Chen JS & Nuanmanee N et al. 2012 Treating diabetes and obesity with an FGF21-mimetic antibody activating the betaKlotho/FGFR1c receptor complex. Science Translational Medicine 4 162ra153. (doi:10.1126/scitranslmed.3004690)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Foster MT, Shi H, Seeley RJ & Woods SC 2011 Removal of intra-abdominal visceral adipose tissue improves glucose tolerance in rats: role of hepatic triglyceride storage. Physiology and Behavior 104 845854. (doi:10.1016/j.physbeh.2011.04.064)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Foster MT, Softic S, Caldwell J, Kohli R, de Kloet AD & Seeley RJ 2013 Subcutaneous adipose tissue transplantation in diet-induced obese mice attenuates metabolic dysregulation while removal exacerbates it. Physiological Reports 1 e00015 . (doi:10.1002/phy2.15)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Frayn KN 2002 Adipose tissue as a buffer for daily lipid flux. Diabetologia 45 12011210. (doi:10.1007/s00125-002-0873-y)

  • Friedman JM & Halaas JL 1998 Leptin and the regulation of body weight in mammals. Nature 395 763770. (doi:10.1038/27376)

  • Gerber M, Boettner A, Seidel B, Lammert A, Bar J, Schuster E, Thiery J, Kiess W & Kratzsch J 2005 Serum resistin levels of obese and lean children and adolescents: biochemical analysis and clinical relevance. Journal of Clinical Endocrinology and Metabolism 90 45034509. (doi:10.1210/jc.2005-0437)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Ghorbani M & Himms-Hagen J 1997 Appearance of brown adipocytes in white adipose tissue during CL 316,243-induced reversal of obesity and diabetes in Zucker fa/fa rats. International Journal of Obesity and Related Metabolic Disorders 21 465475. (doi:10.1038/sj.ijo.0800432)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Gil-Campos M, Canete RR & Gil A 2004 Adiponectin, the missing link in insulin resistance and obesity. Clinical Nutrition 23 963974. (doi:10.1016/j.clnu.2004.04.010)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Gilsanz V, Hu HH & Kajimura S 2013 Relevance of brown adipose tissue in infancy and adolescence. Pediatric Research 73 39. (doi:10.1038/pr.2012.141)

  • Giralt M, Cereijo R & Villarroya F 2016 Adipokines and the endocrine role of adipose tissues. Handbook of Experimental Pharmacology 233 265282. (doi:10.1007/164_2015_6)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Golden PL, Maccagnan TJ & Pardridge WM 1997 Human blood–brain barrier leptin receptor. Binding and endocytosis in isolated human brain microvessels. Journal of Clinical Investigation 99 1418. (doi:10.1172/JCI119125)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Gong J, Sun Z & Li P 2009 CIDE proteins and metabolic disorders. Current Opinion in Lipidology 20 121126. (doi:10.1097/MOL.0b013e328328d0bb)

  • Gong J, Sun Z, Wu L, Xu W, Schieber N, Xu D, Shui G, Yang H, Parton RG & Li P 2011 Fsp27 promotes lipid droplet growth by lipid exchange and transfer at lipid droplet contact sites. Journal of Cell Biology 195 953963. (doi:10.1083/jcb.201104142)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Goralski KB, McCarthy TC, Hanniman EA, Zabel BA, Butcher EC, Parlee SD, Muruganandan S & Sinal CJ 2007 Chemerin, a novel adipokine that regulates adipogenesis and adipocyte metabolism. Journal of Biological Chemistry 282 2817528188. (doi:10.1074/jbc.M700793200)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Guerra C, Koza RA, Yamashita H, Walsh K & Kozak LP 1998 Emergence of brown adipocytes in white fat in mice is under genetic control. Effects on body weight and adiposity. Journal of Clinical Investigation 102 412420. (doi:10.1172/JCI3155)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Guilherme A, Virbasius JV, Puri V & Czech MP 2008 Adipocyte dysfunctions linking obesity to insulin resistance and type 2 diabetes. Nature Reviews Molecular Cell Biology 9 367377. (doi:10.1038/nrm2391)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Gunawardana SC & Piston DW 2012 Reversal of type 1 diabetes in mice by brown adipose tissue transplant. Diabetes 61 674682. (doi:10.2337/db11-0510)

  • Haagsman HP, de Haas CG, Geelen MJ & van Golde LM 1982 Regulation of triacylglycerol synthesis in the liver. Modulation of diacylglycerol acyltransferase activity in vitro. Journal of Biological Chemistry 257 1059310598.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Haemmerle G, Lass A, Zimmermann R, Gorkiewicz G, Meyer C, Rozman J, Heldmaier G, Maier R, Theussl C & Eder S et al. 2006 Defective lipolysis and altered energy metabolism in mice lacking adipose triglyceride lipase. Science 312 734737. (doi:10.1126/science.1123965)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Haemmerle G, Zimmermann R, Hayn M, Theussl C, Waeg G, Wagner E, Sattler W, Magin TM, Wagner EF & Zechner R 2002 Hormone-sensitive lipase deficiency in mice causes diglyceride accumulation in adipose tissue, muscle, and testis. Journal of Biological Chemistry 277 48064815. (doi:10.1074/jbc.M110355200)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Halaas JL, Gajiwala KS, Maffei M, Cohen SL, Chait BT, Rabinowitz D, Lallone RL, Burley SK & Friedman JM 1995 Weight-reducing effects of the plasma protein encoded by the obese gene. Science 269 543546. (doi:10.1126/science.7624777)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Haluzik M, Parizkova J & Haluzik MM 2004 Adiponectin and its role in the obesity-induced insulin resistance and related complications. Physiological Research 53 123129.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Hansen GH, Niels-Christiansen LL & Danielsen EM 2008 Leptin and the obesity receptor (OB-R) in the small intestine and colon: a colocalization study. Journal of Histochemistry and Cytochemistry 56 677685. (doi:10.1369/jhc.2008.950782)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Harlan SM, Morgan DA, Agassandian K, Guo DF, Cassell MD, Sigmund CD, Mark AL & Rahmouni K 2011 Ablation of the leptin receptor in the hypothalamic arcuate nucleus abrogates leptin-induced sympathetic activation. Circulation Research 108 808812. (doi:10.1161/CIRCRESAHA.111.240226)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Harms M & Seale P 2013 Brown and beige fat: development, function and therapeutic potential. Nature Medicine 19 12521263. (doi:10.1038/nm.3361)

  • Harms MJ, Ishibashi J, Wang W, Lim HW, Goyama S, Sato T, Kurokawa M, Won KJ & Seale P 2014 Prdm16 is required for the maintenance of brown adipocyte identity and function in adult mice. Cell Metabolism 19 593604. (doi:10.1016/j.cmet.2014.03.007)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Harris CA, Haas JT, Streeper RS, Stone SJ, Kumari M, Yang K, Han X, Brownell N, Gross RW & Zechner R et al. 2011 DGAT enzymes are required for triacylglycerol synthesis and lipid droplets in adipocytes. Journal of Lipid Research 52 657667. (doi:10.1194/jlr.M013003)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Hasegawa G, Ohta M, Ichida Y, Obayashi H, Shigeta M, Yamasaki M, Fukui M, Yoshikawa T & Nakamura N 2005 Increased serum resistin levels in patients with type 2 diabetes are not linked with markers of insulin resistance and adiposity. Acta Diabetologica 42 104109. (doi:10.1007/s00592-005-0187-x)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Hegele RA, Cao H, Frankowski C, Mathews ST & Leff T 2002 PPARG F388L, a transactivation-deficient mutant, in familial partial lipodystrophy. Diabetes 51 35863590. (doi:10.2337/diabetes.51.12.3586)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Herman MA, Peroni OD, Villoria J, Schon MR, Abumrad NA, Bluher M, Klein S & Kahn BB 2012 A novel ChREBP isoform in adipose tissue regulates systemic glucose metabolism. Nature 484 333338. (doi:10.1038/nature10986)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Heymsfield SB, Greenberg AS, Fujioka K, Dixon RM, Kushner R, Hunt T, Lubina JA, Patane J, Self B & Hunt P et al. 1999 Recombinant leptin for weight loss in obese and lean adults: a randomized, controlled, dose-escalation trial. JAMA 282 15681575. (doi:10.1001/jama.282.16.1568)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Higgins LS & Depaoli AM 2010 Selective peroxisome proliferator-activated receptor gamma (PPARgamma) modulation as a strategy for safer therapeutic PPARgamma activation. American Journal of Clinical Nutrition 91 267S272S. (doi:10.3945/ajcn.2009.28449E)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Himms-Hagen J 1997 On raising energy expenditure in ob/ob mice. Science 276 11321133. (doi:10.1126/science.276.5315.1132)

  • Himms-Hagen J, Cui J, Danforth E Jr, Taatjes DJ, Lang SS, Waters BL & Claus TH 1994 Effect of CL-316,243, a thermogenic beta 3-agonist, on energy balance and brown and white adipose tissues in rats. American Journal of Physiology 266 R1371R1382.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Himms-Hagen J, Melnyk A, Zingaretti MC, Ceresi E, Barbatelli G & Cinti S 2000 Multilocular fat cells in WAT of CL-316243-treated rats derive directly from white adipocytes. American Journal of Physiology: Cell Physiology 279 C670C681.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Hoffstedt J, Arvidsson E, Sjolin E, Wahlen K & Arner P 2004 Adipose tissue adiponectin production and adiponectin serum concentration in human obesity and insulin resistance. Journal of Clinical Endocrinology and Metabolism 89 13911396. (doi:10.1210/jc.2003-031458)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Hogberg H, Engblom L, Ekdahl A, Lidell V, Walum E & Alberts P 2006 Temperature dependence of O2 consumption; opposite effects of leptin and etomoxir on respiratory quotient in mice. Obesity 14 673682. (doi:10.1038/oby.2006.76)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Holland WL, Miller RA, Wang ZV, Sun K, Barth BM, Bui HH, Davis KE, Bikman BT, Halberg N & Rutkowski JM et al. 2011 Receptor-mediated activation of ceramidase activity initiates the pleiotropic actions of adiponectin. Nature Medicine 17 5563. (doi:10.1038/nm.2277)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Hondares E, Gallego-Escuredo JM, Flachs P, Frontini A, Cereijo R, Goday A, Perugini J, Kopecky P, Giralt M & Cinti S et al. 2014 Fibroblast growth factor-21 is expressed in neonatal and pheochromocytoma-induced adult human brown adipose tissue. Metabolism 63 312317. (doi:10.1016/j.metabol.2013.11.014)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Hondares E, Iglesias R, Giralt A, Gonzalez FJ, Giralt M, Mampel T & Villarroya F 2011 Thermogenic activation induces FGF21 expression and release in brown adipose tissue. Journal of Biological Chemistry 286 1298312990. (doi:10.1074/jbc.M110.215889)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Hondares E, Rosell M, Gonzalez FJ, Giralt M, Iglesias R & Villarroya F 2010 Hepatic FGF21 expression is induced at birth via PPARalpha in response to milk intake and contributes to thermogenic activation of neonatal brown fat. Cell Metabolism 11 206212. (doi:10.1016/j.cmet.2010.02.001)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Hotta Y, Nakamura H, Konishi M, Murata Y, Takagi H, Matsumura S, Inoue K, Fushiki T & Itoh N 2009 Fibroblast growth factor 21 regulates lipolysis in white adipose tissue but is not required for ketogenesis and triglyceride clearance in liver. Endocrinology 150 46254633. (doi:10.1210/en.2009-0119)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Hui X, Gu P, Zhang J, Nie T, Pan Y, Wu D, Feng T, Zhong C, Wang Y & Lam KS et al. 2015 Adiponectin enhances cold-induced browning of subcutaneous adipose tissue via promoting M2 macrophage proliferation. Cell Metabolism 22 279290. (doi:10.1016/j.cmet.2015.06.004)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Hui X, Lam KS, Vanhoutte PM & Xu A 2012 Adiponectin and cardiovascular health: an update. British Journal of Pharmacology 165 574590. (doi:10.1111/j.1476-5381.2011.01395.x)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Ibrahim MM 2010 Subcutaneous and visceral adipose tissue: structural and functional differences. Obesity Reviews 11 1118. (doi:10.1111/j.1467-789X.2009.00623.x)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Imai T, Takakuwa R, Marchand S, Dentz E, Bornert JM, Messaddeq N, Wendling O, Mark M, Desvergne B & Wahli W et al. 2004 Peroxisome proliferator-activated receptor gamma is required in mature white and brown adipocytes for their survival in the mouse. PNAS 101 45434547. (doi:10.1073/pnas.0400356101)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Iqbal N, Seshadri P, Stern L, Loh J, Kundu S, Jafar T & Samaha FF 2005 Serum resistin is not associated with obesity or insulin resistance in humans. European Review for Medical and Pharmacological Sciences 9 161165.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Ishibashi J & Seale P 2010 Medicine. Beige can be slimming. Science 328 11131114. (doi:10.1126/science.1190816)

  • Itoh N 2010 Hormone-like (endocrine) Fgfs: their evolutionary history and roles in development, metabolism, and disease. Cell and Tissue Research 342 111. (doi:10.1007/s00441-010-1024-2)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Iwabu M, Yamauchi T, Okada-Iwabu M, Sato K, Nakagawa T, Funata M, Yamaguchi M, Namiki S, Nakayama R & Tabata M et al. 2010 Adiponectin and AdipoR1 regulate PGC-1alpha and mitochondria by Ca(2+) and AMPK/SIRT1. Nature 464 13131319. (doi:10.1038/nature08991)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Jacene HA, Cohade CC, Zhang Z & Wahl RL 2011 The relationship between patients’ serum glucose levels and metabolically active brown adipose tissue detected by PET/CT. Molecular Imaging and Biology 13 12781283. (doi:10.1007/s11307-010-0379-9)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Jamaluddin MS, Weakley SM, Yao Q & Chen C 2012 Resistin: functional roles and therapeutic considerations for cardiovascular disease. British Journal of Pharmacology 165 622632. (doi:10.1111/j.1476-5381.2011.01369.x)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Jeanson Y, Carriere A & Casteilla L 2015 A new role for browning as a redox and stress adaptive mechanism? Frontiers in Endocrinology 6 158. (doi:10.3389/fendo.2015.00158)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Jedrychowski MP, Wrann CD, Paulo JA, Gerber KK, Szpyt J, Robinson MM, Nair KS, Gygi SP & Spiegelman BM 2015 Detection and quantitation of circulating human irisin by tandem mass spectrometry. Cell Metabolism 22 734740. (doi:10.1016/j.cmet.2015.08.001)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Jespersen NZ, Larsen TJ, Peijs L, Daugaard S, Homoe P, Loft A, de Jong J, Mathur N, Cannon B & Nedergaard J et al. 2013 A classical brown adipose tissue mRNA signature partly overlaps with brite in the supraclavicular region of adult humans. Cell Metabolism 17 798805. (doi:10.1016/j.cmet.2013.04.011)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Jimenez MA, Akerblad P, Sigvardsson M & Rosen ED 2007 Critical role for Ebf1 and Ebf2 in the adipogenic transcriptional cascade. Molecular and Cellular Biology 27 743757. (doi:10.1128/MCB.01557-06)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Kadowaki T, Yamauchi T, Kubota N, Hara K, Ueki K & Tobe K 2006 Adiponectin and adiponectin receptors in insulin resistance, diabetes, and the metabolic syndrome. Journal of Clinical Investigation 116 17841792. (doi:10.1172/JCI29126)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Kaiyala KJ, Ogimoto K, Nelson JT, Schwartz MW & Morton GJ 2015 Leptin signaling is required for adaptive changes in food intake, but not energy expenditure, in response to different thermal conditions. PLoS ONE 10 e0119391. (doi:10.1371/journal.pone.0119391)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Kajimura D, Lee HW, Riley KJ, Arteaga-Solis E, Ferron M, Zhou B, Clarke CJ, Hannun YA, DePinho RA & Guo XE et al. 2013 Adiponectin regulates bone mass via opposite central and peripheral mechanisms through FoxO1. Cell Metabolism 17 901915. (doi:10.1016/j.cmet.2013.04.009)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Kajimura S, Seale P, Kubota K, Lunsford E, Frangioni JV, Gygi SP & Spiegelman BM 2009 Initiation of myoblast to brown fat switch by a PRDM16-C/EBP-beta transcriptional complex. Nature 460 11541158. (doi:10.1038/nature08262)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Kajimura S, Seale P, Tomaru T, Erdjument-Bromage H, Cooper MP, Ruas JL, Chin S, Tempst P, Lazar MA & Spiegelman BM 2008 Regulation of the brown and white fat gene programs through a PRDM16/CtBP transcriptional complex. Genes and Development 22 13971409. (doi:10.1101/gad.1666108)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Kanda H, Tateya S, Tamori Y, Kotani K, Hiasa K, Kitazawa R, Kitazawa S, Miyachi H, Maeda S & Egashira K et al. 2006 MCP-1 contributes to macrophage infiltration into adipose tissue, insulin resistance, and hepatic steatosis in obesity. Journal of Clinical Investigation 116 14941505. (doi:10.1172/JCI26498)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Kelly LJ, Vicario PP, Thompson GM, Candelore MR, Doebber TW, Ventre J, Wu MS, Meurer R, Forrest MJ & Conner MW et al. 1998 Peroxisome proliferator-activated receptors gamma and alpha mediate in vivo regulation of uncoupling protein (UCP-1, UCP-2, UCP-3) gene expression. Endocrinology 139 49204927. (doi:10.1210/en.139.12.4920)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Kersten S 2014 Physiological regulation of lipoprotein lipase. Biochimica et Biophysica Acta 1841 919933. (doi:10.1016/j.bbalip.2014.03.013)

  • Kiefer FW, Vernochet C, O’Brien P, Spoerl S, Brown JD, Nallamshetty S, Zeyda M, Stulnig TM, Cohen DE & Kahn CR et al. 2012 Retinaldehyde dehydrogenase 1 regulates a thermogenic program in white adipose tissue. Nature Medicine 18 918925. (doi:10.1038/nm.2757)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Kim KH, Jeong YT, Oh H, Kim SH, Cho JM, Kim YN, Kim SS, Kim do H, Hur KY & Kim HK et al. 2013 Autophagy deficiency leads to protection from obesity and insulin resistance by inducing Fgf21 as a mitokine. Nature Medicine 19 8392. (doi:10.1038/nm.3014)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Kintscher U & Goebel M 2009 INT-131, a PPARgamma agonist for the treatment of type 2 diabetes. Current Opinion in Investigational Drugs 10 381387.

  • Kleiner S, Mepani RJ, Laznik D, Ye L, Jurczak MJ, Jornayvaz FR, Estall JL, Chatterjee Bhowmick D, Shulman GI & Spiegelman BM 2012 Development of insulin resistance in mice lacking PGC-1alpha in adipose tissues. PNAS 109 96359640. (doi:10.1073/pnas.1207287109)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Kong X, Banks A, Liu T, Kazak L, Rao RR, Cohen P, Wang X, Yu S, Lo JC & Tseng YH et al. 2014 IRF4 is a key thermogenic transcriptional partner of PGC-1alpha. Cell 158 6983. (doi:10.1016/j.cell.2014.04.049)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Kopecky J, Clarke G, Enerback S, Spiegelman B & Kozak LP 1995 Expression of the mitochondrial uncoupling protein gene from the aP2 gene promoter prevents genetic obesity. Journal of Clinical Investigation 96 29142923. (doi:10.1172/JCI118363)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Koutnikova H, Cock TA, Watanabe M, Houten SM, Champy MF, Dierich A & Auwerx J 2003 Compensation by the muscle limits the metabolic consequences of lipodystrophy in PPAR gamma hypomorphic mice. PNAS 100 1445714462. (doi:10.1073/pnas.2336090100)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Kroker AJ & Bruning JB 2015 Review of the structural and dynamic mechanisms of PPARgamma partial agonism. PPAR Research 2015 816856. (doi:10.1155/2015/816856)

  • Kubota N, Yano W, Kubota T, Yamauchi T, Itoh S, Kumagai H, Kozono H, Takamoto I, Okamoto S & Shiuchi T et al. 2007 Adiponectin stimulates AMP-activated protein kinase in the hypothalamus and increases food intake. Cell Metabolism 6 5568. (doi:10.1016/j.cmet.2007.06.003)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Kumano S, Matsumoto H, Takatsu Y, Noguchi J, Kitada C & Ohtaki T 2003 Changes in hypothalamic expression levels of galanin-like peptide in rat and mouse models support that it is a leptin-target peptide. Endocrinology 144 26342643. (doi:10.1210/en.2002-221113)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Kuriyama H, Shimomura I, Kishida K, Kondo H, Furuyama N, Nishizawa H, Maeda N, Matsuda M, Nagaretani H & Kihara S et al. 2002 Coordinated regulation of fat-specific and liver-specific glycerol channels, aquaporin adipose and aquaporin 9. Diabetes 51 29152921. (doi:10.2337/diabetes.51.10.2915)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Lafontan M & Langin D 2009 Lipolysis and lipid mobilization in human adipose tissue. Progress in Lipid Research 48 275297. (doi:10.1016/j.plipres.2009.05.001)

  • Lago F, Gomez R, Gomez-Reino JJ, Dieguez C & Gualillo O 2009 Adipokines as novel modulators of lipid metabolism. Trends in Biochemical Sciences 34 500510. (doi:10.1016/j.tibs.2009.06.008)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Langin D 2006 Adipose tissue lipolysis as a metabolic pathway to define pharmacological strategies against obesity and the metabolic syndrome. Pharmacological Research 53 482491. (doi:10.1016/j.phrs.2006.03.009)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Langin D & Arner P 2006 Importance of TNFalpha and neutral lipases in human adipose tissue lipolysis. Trends in Endocrinology and Metabolism 17 314320. (doi:10.1016/j.tem.2006.08.003)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Laviola L, Perrini S, Cignarelli A, Natalicchio A, Leonardini A, De Stefano F, Cuscito M, De Fazio M, Memeo V & Neri V et al. 2006 Insulin signaling in human visceral and subcutaneous adipose tissue in vivo. Diabetes 55 952961. (doi:10.2337/diabetes.55.04.06.db05-1414)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Le Lay S, Boucher J, Rey A, Castan-Laurell I, Krief S, Ferre P, Valet P & Dugail I 2001 Decreased resistin expression in mice with different sensitivities to a high-fat diet. Biochemical and Biophysical Research Communications 289 564567. (doi:10.1006/bbrc.2001.6015)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Lee GH, Proenca R, Montez JM, Carroll KM, Darvishzadeh JG, Lee JI & Friedman JM 1996 Abnormal splicing of the leptin receptor in diabetic mice. Nature 379 632635. (doi:10.1038/379632a0)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Lee JE & Ge K 2014 Transcriptional and epigenetic regulation of PPARgamma expression during adipogenesis. Cell and Bioscience 4 29. (doi:10.1186/2045-3701-4-29)

  • Lee JH, Bullen JW Jr, Stoyneva VL & Mantzoros CS 2005 Circulating resistin in lean, obese, and insulin-resistant mouse models: lack of association with insulinemia and glycemia. American Journal of Physiology: Endocrinology and Metabolism 288 E625E632. (doi:10.1152/ajpendo.00184.2004)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Lee JH, Chan JL, Yiannakouris N, Kontogianni M, Estrada E, Seip R, Orlova C & Mantzoros CS 2003 Circulating resistin levels are not associated with obesity or insulin resistance in humans and are not regulated by fasting or leptin administration: cross-sectional and interventional studies in normal, insulin-resistant, and diabetic subjects. Journal of Clinical Endocrinology and Metabolism 88 48484856. (doi:10.1210/jc.2003-030519)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Lee MW, Odegaard JI, Mukundan L, Qiu Y, Molofsky AB, Nussbaum JC, Yun K, Locksley RM & Chawla A 2015a Activated type 2 innate lymphoid cells regulate beige fat biogenesis. Cell 160 7487. (doi:10.1016/j.cell.2014.12.011)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Lee YH, Petkova AP, Konkar AA & Granneman JG 2015b Cellular origins of cold-induced brown adipocytes in adult mice. FASEB Journal 29 286299. (doi:10.1096/fj.14-263038)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Lee P, Greenfield JR, Ho KK & Fulham MJ 2010 A critical appraisal of the prevalence and metabolic significance of brown adipose tissue in adult humans. American Journal of Physiology: Endocrinology and Metabolism 299 E601E606. (doi:10.1152/ajpendo.00298.2010)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Lee P, Linderman JD, Smith S, Brychta RJ, Wang J, Idelson C, Perron RM, Werner CD, Phan GQ & Kammula US et al. 2014a Irisin and FGF21 are cold-induced endocrine activators of brown fat function in humans. Cell Metabolism 19 302309. (doi:10.1016/j.cmet.2013.12.017)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Lee P, Werner CD, Kebebew E & Celi FS 2014b Functional thermogenic beige adipogenesis is inducible in human neck fat. International Journal of Obesity 38 170176. (doi:10.1038/ijo.2013.82)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Lee YH, Petkova AP, Mottillo EP & Granneman JG 2012 In vivo identification of bipotential adipocyte progenitors recruited by beta3-adrenoceptor activation and high-fat feeding. Cell Metabolism 15 480491. (doi:10.1016/j.cmet.2012.03.009)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Lefterova MI & Lazar MA 2009 New developments in adipogenesis. Trends in Endocrinology and Metabolism 20 107114. (doi:10.1016/j.tem.2008.11.005)

  • Lefterova MI, Zhang Y, Steger DJ, Schupp M, Schug J, Cristancho A, Feng D, Zhuo D, Stoeckert CJ Jr & Liu XS et al. 2008 PPARgamma and C/EBP factors orchestrate adipocyte biology via adjacent binding on a genome-wide scale. Genes and Development 22 29412952. (doi:10.1101/gad.1709008)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Lepper C & Fan CM 2010 Inducible lineage tracing of Pax7-descendant cells reveals embryonic origin of adult satellite cells. Genesis 48 424436. (doi:10.1002/dvg.20630)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Letexier D, Pinteur C, Large V, Frering V & Beylot M 2003 Comparison of the expression and activity of the lipogenic pathway in human and rat adipose tissue. Journal of Lipid Research 44 21272134. (doi:10.1194/jlr.M300235-JLR200)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Li F, Wu R, Cui X, Zha L, Yu L, Shi H & Xue B 2016 Histone deacetylase 1 (HDAC1) negatively regulates thermogenic program in brown adipocytes via coordinated regulation of histone H3 lysine 27 (H3K27) deacetylation and methylation. Journal of Biological Chemistry 291 45234536. (doi:10.1074/jbc.M115.677930)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Liao GY, An JJ, Gharami K, Waterhouse EG, Vanevski F, Jones KR & Xu B 2012 Dendritically targeted Bdnf mRNA is essential for energy balance and response to leptin. Nature Medicine 18 564571. (doi:10.1038/nm.2687)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Lidell ME, Betz MJ, Dahlqvist Leinhard O, Heglind M, Elander L, Slawik M, Mussack T, Nilsson D, Romu T & Nuutila P et al. 2013 Evidence for two types of brown adipose tissue in humans. Nature Medicine 19 631634. (doi:10.1038/nm.3017)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Liu D, Bordicchia M, Zhang C, Fang H, Wei W, Li JL, Guilherme A, Guntur K, Czech MP & Collins S 2016 Activation of mTORC1 is essential for beta-adrenergic stimulation of adipose browning. Journal of Clinical Investigation 126 17041716. (doi:10.1172/JCI83532)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Liu M, Bai J, He S, Villarreal R, Hu D, Zhang C, Yang X, Liang H, Slaga TJ & Yu Y et al. 2014 Grb10 promotes lipolysis and thermogenesis by phosphorylation-dependent feedback inhibition of mTORC1. Cell Metabolism 19 967980. (doi:10.1016/j.cmet.2014.03.018)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Lockie SH, Heppner KM, Chaudhary N, Chabenne JR, Morgan DA, Veyrat-Durebex C, Ananthakrishnan G, Rohner-Jeanrenaud F, Drucker DJ & DiMarchi R et al. 2012 Direct control of brown adipose tissue thermogenesis by central nervous system glucagon-like peptide-1 receptor signaling. Diabetes 61 27532762. (doi:10.2337/db11-1556)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Lodhi IJ, Yin L, Jensen-Urstad AP, Funai K, Coleman T, Baird JH, El Ramahi MK, Razani B, Song H & Fu-Hsu F et al. 2012 Inhibiting adipose tissue lipogenesis reprograms thermogenesis and PPARgamma activation to decrease diet-induced obesity. Cell Metabolism 16 189201. (doi:10.1016/j.cmet.2012.06.013)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Lopez M, Seoane L, Garcia MC, Lago F, Casanueva FF, Senaris R & Dieguez C 2000 Leptin regulation of prepro-orexin and orexin receptor mRNA levels in the hypothalamus. Biochemical and Biophysical Research Communications 269 4145. (doi:10.1006/bbrc.2000.2245)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Lopez M, Varela L, Vazquez MJ, Rodriguez-Cuenca S, Gonzalez CR, Velagapudi VR, Morgan DA, Schoenmakers E, Agassandian K & Lage R et al. 2010 Hypothalamic AMPK and fatty acid metabolism mediate thyroid regulation of energy balance. Nature Medicine 16 10011008. (doi:10.1038/nm.2207)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Loskutoff DJ & Samad F 1998 The adipocyte and hemostatic balance in obesity: studies of PAI-1. Arteriosclerosis, Thrombosis, and Vascular Biology 18 16. (doi:10.1161/01.ATV.18.1.1)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Lowell BB & Spiegelman BM 2000 Towards a molecular understanding of adaptive thermogenesis. Nature 404 652660.

  • Mao X, Kikani CK, Riojas RA, Langlais P, Wang L, Ramos FJ, Fang Q, Christ-Roberts CY, Hong JY & Kim RY et al. 2006 APPL1 binds to adiponectin receptors and mediates adiponectin signalling and function. Nature Cell Biology 8 516523. (doi:10.1038/ncb1404)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Marcinkiewicz A, Gauthier D, Garcia A & Brasaemle DL 2006 The phosphorylation of serine 492 of perilipin a directs lipid droplet fragmentation and dispersion. Journal of Biological Chemistry 281 1190111909. (doi:10.1074/jbc.M600171200)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Margoni A, Fotis L & Papavassiliou AG 2012 The transforming growth factor-beta/bone morphogenetic protein signalling pathway in adipogenesis. International Journal of Biochemistry and Cell Biology 44 475479. (doi:10.1016/j.biocel.2011.12.014)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Marroqui L, Gonzalez A, Neco P, Caballero-Garrido E, Vieira E, Ripoll C, Nadal A & Quesada I 2012 Role of leptin in the pancreatic beta-cell: effects and signaling pathways. Journal of Molecular Endocrinology 49 R9R17. (doi:10.1530/JME-12-0025)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Masaki T, Chiba S, Yasuda T, Tsubone T, Kakuma T, Shimomura I, Funahashi T, Matsuzawa Y & Yoshimatsu H 2003 Peripheral, but not central, administration of adiponectin reduces visceral adiposity and upregulates the expression of uncoupling protein in agouti yellow (Ay/a) obese mice. Diabetes 52 22662273. (doi:10.2337/diabetes.52.9.2266)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Mattern A, Zellmann T & Beck-Sickinger AG 2014 Processing, signaling, and physiological function of chemerin. IUBMB Life 66 1926. (doi:10.1002/iub.1242)

  • Maury E & Brichard SM 2010 Adipokine dysregulation, adipose tissue inflammation and metabolic syndrome. Molecular and Cellular Endocrinology 314 116. (doi:10.1016/j.mce.2009.07.031)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • McGlashon JM, Gorecki MC, Kozlowski AE, Thirnbeck CK, Markan KR, Leslie KL, Kotas ME, Potthoff MJ, Richerson GB & Gillum MP 2015 Central serotonergic neurons activate and recruit thermogenic brown and beige fat and regulate glucose and lipid homeostasis. Cell Metabolism 21 692705. (doi:10.1016/j.cmet.2015.04.008)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • McTernan PG, McTernan CL, Chetty R, Jenner K, Fisher FM, Lauer MN, Crocker J, Barnett AH & Kumar S 2002 Increased resistin gene and protein expression in human abdominal adipose tissue. Journal of Clinical Endocrinology and Metabolism 87 2407. (doi:10.1210/jcem.87.5.8627)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Meister B 2000 Control of food intake via leptin receptors in the hypothalamus. Vitamins and Hormones 59 265304. (doi:10.1016/s0083-6729(00)59010-4)

  • Milan G, Granzotto M, Scarda A, Calcagno A, Pagano C, Federspil G & Vettor R 2002 Resistin and adiponectin expression in visceral fat of obese rats: effect of weight loss. Obesity Research 10 10951103. (doi:10.1038/oby.2002.149)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Miller RA, Chu Q, Le Lay J, Scherer PE, Ahima RS, Kaestner KH, Foretz M, Viollet B & Birnbaum MJ 2011 Adiponectin suppresses gluconeogenic gene expression in mouse hepatocytes independent of LKB1-AMPK signaling. Journal of Clinical Investigation 121 25182528. (doi:10.1172/JCI45942)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Min SY, Kady J, Nam M, Rojas-Rodriguez R, Berkenwald A, Kim JH, Noh HL, Kim JK, Cooper MP & Fitzgibbons T et al. 2016 Human ‘brite/beige’ adipocytes develop from capillary networks, and their implantation improves metabolic homeostasis in mice. Nature Medicine 22 312318. (doi:10.1038/nm.4031)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Moon HS, Dalamaga M, Kim SY, Polyzos SA, Hamnvik OP, Magkos F, Paruthi J & Mantzoros CS 2013 Leptin’s role in lipodystrophic and nonlipodystrophic insulin-resistant and diabetic individuals. Endocrine Reviews 34 377412. (doi:10.1210/er.2012-1053)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Morton GJ & Schwartz MW 2011 Leptin and the central nervous system control of glucose metabolism. Physiological Reviews 91 389411. (doi:10.1152/physrev.00007.2010)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Moschos S, Chan JL & Mantzoros CS 2002 Leptin and reproduction: a review. Fertility and Sterility 77 433444. (doi:10.1016/S0015-0282(01)03010-2)

  • Mottillo EP, Bloch AE, Leff T & Granneman JG 2012 Lipolytic products activate peroxisome proliferator-activated receptor (PPAR) alpha and delta in brown adipocytes to match fatty acid oxidation with supply. Journal of Biological Chemistry 287 2503825048. (doi:10.1074/jbc.M112.374041)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Murano I, Barbatelli G, Giordano A & Cinti S 2009 Noradrenergic parenchymal nerve fiber branching after cold acclimatisation correlates with brown adipocyte density in mouse adipose organ. Journal of Anatomy 214 171178. (doi:10.1111/j.1469-7580.2008.01001.x)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Nagaev I & Smith U 2001 Insulin resistance and type 2 diabetes are not related to resistin expression in human fat cells or skeletal muscle. Biochemical and Biophysical Research Communications 285 561564. (doi:10.1006/bbrc.2001.5173)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Nawrocki AR, Rajala MW, Tomas E, Pajvani UB, Saha AK, Trumbauer ME, Pang Z, Chen AS, Ruderman NB & Chen H et al. 2006 Mice lacking adiponectin show decreased hepatic insulin sensitivity and reduced responsiveness to peroxisome proliferator-activated receptor gamma agonists. Journal of Biological Chemistry 281 26542660. (doi:10.1074/jbc.M505311200)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Nedergaard J, Bengtsson T & Cannon B 2007 Unexpected evidence for active brown adipose tissue in adult humans. American Journal of Physiology: Endocrinology and Metabolism 293 E444E452. (doi:10.1152/ajpendo.00691.2006)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Nedergaard J & Cannon B 2013 UCP1 mRNA does not produce heat. Biochimica et Biophysica Acta 1831 943949. (doi:10.1016/j.bbalip.2013.01.009)

  • Nguyen KD, Qiu Y, Cui X, Goh YP, Mwangi J, David T, Mukundan L, Brombacher F, Locksley RM & Chawla A 2011 Alternatively activated macrophages produce catecholamines to sustain adaptive thermogenesis. Nature 480 104108. (doi:10.1038/nature10653)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • O’Brien RM & Granner DK 1996 Regulation of gene expression by insulin. Physiological Reviews 76 11091161.

  • Oldfield BJ, Giles ME, Watson A, Anderson C, Colvill LM & McKinley MJ 2002 The neurochemical characterisation of hypothalamic pathways projecting polysynaptically to brown adipose tissue in the rat. Neuroscience 110 515526. (doi:10.1016/S0306-4522(01)00555-3)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Oliver P, Pico C, Serra F & Palou A 2003 Resistin expression in different adipose tissue depots during rat development. Molecular and Cellular Biochemistry 252 397400. (doi:10.1023/A:1025500605884)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Osuga J, Ishibashi S, Oka T, Yagyu H, Tozawa R, Fujimoto A, Shionoiri F, Yahagi N, Kraemer FB & Tsutsumi O et al. 2000 Targeted disruption of hormone-sensitive lipase results in male sterility and adipocyte hypertrophy, but not in obesity. PNAS 97 787792. (doi:10.1073/pnas.97.2.787)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Pajvani UB, Du X, Combs TP, Berg AH, Rajala MW, Schulthess T, Engel J, Brownlee M & Scherer PE 2003 Structure-function studies of the adipocyte-secreted hormone Acrp30/adiponectin. Implications fpr metabolic regulation and bioactivity. Journal of Biological Chemistry 278 90739085. (doi:10.1074/jbc.M207198200)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Pajvani UB, Hawkins M, Combs TP, Rajala MW, Doebber T, Berger JP, Wagner JA, Wu M, Knopps A & Xiang AH et al. 2004 Complex distribution, not absolute amount of adiponectin, correlates with thiazolidinedione-mediated improvement in insulin sensitivity. Journal of Biological Chemistry 279 1215212162. (doi:10.1074/jbc.M311113200)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Parimisetty A, Dorsemans AC, Awada R, Ravanan P, Diotel N & Lefebvre d’Hellencourt C 2016 Secret talk between adipose tissue and central nervous system via secreted factors-an emerging frontier in the neurodegenerative research. Journal of Neuroinflammation 13 67. (doi:10.1186/s12974-016-0530-x)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Park JH, Hur W & Lee SB 2015 Intricate transcriptional networks of classical brown and beige fat cells. Frontiers in Endocrinology 6 124. (doi:10.3389/fendo.2015.00124)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Patel L, Buckels AC, Kinghorn IJ, Murdock PR, Holbrook JD, Plumpton C, Macphee CH & Smith SA 2003 Resistin is expressed in human macrophages and directly regulated by PPAR gamma activators. Biochemical and Biophysical Research Communications 300 472476. (doi:10.1016/S0006-291X(02)02841-3)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Patel SD, Rajala MW, Rossetti L, Scherer PE & Shapiro L 2004 Disulfide-dependent multimeric assembly of resistin family hormones. Science 304 11541158. (doi:10.1126/science.1093466)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Pekkala S, Wiklund PK, Hulmi JJ, Ahtiainen JP, Horttanainen M, Pollanen E, Makela KA, Kainulainen H, Hakkinen K & Nyman K et al. 2013 Are skeletal muscle FNDC5 gene expression and irisin release regulated by exercise and related to health? Journal of Physiology 591 53935400. (doi:10.1113/jphysiol.2013.263707)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Pelleymounter MA, Cullen MJ, Baker MB, Hecht R, Winters D, Boone T & Collins F 1995 Effects of the obese gene product on body weight regulation in ob/ob mice. Science 269 540543. (doi:10.1126/science.7624776)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Perez-Perez A, Sanchez-Jimenez F, Maymo J, Duenas JL, Varone C & Sanchez-Margalet V 2015 Role of leptin in female reproduction. Clinical Chemistry and Laboratory Medicine 53 1528.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Petrovic N, Walden TB, Shabalina IG, Timmons JA, Cannon B & Nedergaard J 2010 Chronic peroxisome proliferator-activated receptor gamma (PPARgamma) activation of epididymally derived white adipocyte cultures reveals a population of thermogenically competent, UCP1-containing adipocytes molecularly distinct from classic brown adipocytes. Journal of Biological Chemistry 285 71537164. (doi:10.1074/jbc.M109.053942)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Pfannenberg C, Werner MK, Ripkens S, Stef I, Deckert A, Schmadl M, Reimold M, Haring HU, Claussen CD & Stefan N 2010 Impact of age on the relationships of brown adipose tissue with sex and adiposity in humans. Diabetes 59 17891793. (doi:10.2337/db10-0004)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Picard F, Naimi N, Richard D & Deshaies Y 1999 Response of adipose tissue lipoprotein lipase to the cephalic phase of insulin secretion. Diabetes 48 452459. (doi:10.2337/diabetes.48.3.452)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Pisani DF, Beranger GE, Corinus A, Giroud M, Ghandour RA, Altirriba J, Chambard JC, Mazure NM, Bendahhou S & Duranton C et al. 2016 The K+ channel TASK1 modulates beta-adrenergic response in brown adipose tissue through the mineralocorticoid receptor pathway. FASEB Journal 30 909922. (doi:10.1096/fj.15-277475)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Qi Y, Takahashi N, Hileman SM, Patel HR, Berg AH, Pajvani UB, Scherer PE & Ahima RS 2004 Adiponectin acts in the brain to decrease body weight. Nature Medicine 10 524529. (doi:10.1038/nm1029)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Raben MS & Hollenberg CH 1960 Effect of glucose and insulin on the esterification of fatty acids by isolated adipose tissue. Journal of Clinical Investigation 39 435439. (doi:10.1172/JCI104055)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Rahmouni K & Morgan DA 2007 Hypothalamic arcuate nucleus mediates the sympathetic and arterial pressure responses to leptin. Hypertension 49 647652. (doi:10.1161/01.HYP.0000254827.59792.b2)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Richard D, Monge-Roffarello B, Chechi K, Labbe SM & Turcotte EE 2012 Control and physiological determinants of sympathetically mediated brown adipose tissue thermogenesis. Frontiers in Endocrinology 3 36. (doi:10.3389/fendo.2012.00036)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Rosen ED, Hsu CH, Wang X, Sakai S, Freeman MW, Gonzalez FJ & Spiegelman BM 2002 C/EBPalpha induces adipogenesis through PPARgamma: a unified pathway. Genes and Development 16 2226. (doi:10.1101/gad.948702)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Rosen ED & MacDougald OA 2006 Adipocyte differentiation from the inside out. Nature Reviews Molecular Cell Biology 7 885896. (doi:10.1038/nrm2066)

  • Rosen ED & Spiegelman BM 2000 Molecular regulation of adipogenesis. Annual Review of Cell and Developmental Biology 16 145171. (doi:10.1146/annurev.cellbio.16.1.145)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Rosen ED & Spiegelman BM 2014 What we talk about when we talk about fat. Cell 156 2044. (doi:10.1016/j.cell.2013.12.012)

  • Rosen ED, Walkey CJ, Puigserver P & Spiegelman BM 2000 Transcriptional regulation of adipogenesis. Genes and Development 14 12931307.

  • Rosenwald M, Perdikari A, Rulicke T & Wolfrum C 2013 Bi-directional interconversion of brite and white adipocytes. Nature Cell Biology 15 659667. (doi:10.1038/ncb2740)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Ruan HB, Dietrich MO, Liu ZW, Zimmer MR, Li MD, Singh JP, Zhang K, Yin R, Wu J & Horvath TL et al. 2014 O-GlcNAc transferase enables AgRP neurons to suppress browning of white fat. Cell 159 306317. (doi:10.1016/j.cell.2014.09.010)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Saddi-Rosa P, Oliveira CS, Giuffrida FM & Reis AF 2010 Visfatin, glucose metabolism and vascular disease: a review of evidence. Diabetology and Metabolic Syndrome 2 21. (doi:10.1186/1758-5996-2-21)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Sahu A 1998 Evidence suggesting that galanin (GAL), melanin-concentrating hormone (MCH), neurotensin (NT), proopiomelanocortin (POMC) and neuropeptide Y (NPY) are targets of leptin signaling in the hypothalamus. Endocrinology 139 795798. (doi:10.1210/endo.139.2.5909)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Sahu A 2003 Leptin signaling in the hypothalamus: emphasis on energy homeostasis and leptin resistance. Frontiers in Neuroendocrinology 24 225253. (doi:10.1016/j.yfrne.2003.10.001)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Saleh J, Al-Wardy N, Farhan H, Al-Khanbashi M & Cianflone K 2011 Acylation stimulating protein: a female lipogenic factor? Obesity Reviews 12 440448. (doi:10.1111/j.1467-789X.2010.00832.x)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Sanchez-Alavez M, Tabarean IV, Osborn O, Mitsukawa K, Schaefer J, Dubins J, Holmberg KH, Klein I, Klaus J & Gomez LF et al. 2010 Insulin causes hyperthermia by direct inhibition of warm-sensitive neurons. Diabetes 59 4350. (doi:10.2337/db09-1128)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Sanchez-Gurmaches J & Guertin DA 2014 Adipocytes arise from multiple lineages that are heterogeneously and dynamically distributed. Nature Communications 5 4099. (doi:10.1038/ncomms5099)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Sanchez-Gurmaches J, Hung CM & Guertin DA 2016 Emerging complexities in adipocyte origins and identity. Trends in Cell Biology 26 313326. (doi:10.1016/j.tcb.2016.01.004)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Sanchez-Gurmaches J, Hung CM, Sparks CA, Tang Y, Li H & Guertin DA 2012 PTEN loss in the Myf5 lineage redistributes body fat and reveals subsets of white adipocytes that arise from Myf5 precursors. Cell Metabolism 16 348362. (doi:10.1016/j.cmet.2012.08.003)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Savage DB & O’Rahilly S 2002 Leptin: a novel therapeutic role in lipodystrophy. Journal of Clinical Investigation 109 12851286. (doi:10.1172/Jbib215326)

  • Savage DB, Sewter CP, Klenk ES, Segal DG, Vidal-Puig A, Considine RV & O’Rahilly S 2001 Resistin/Fizz3 expression in relation to obesity and peroxisome proliferator-activated receptor-gamma action in humans. Diabetes 50 21992202. (doi:10.2337/diabetes.50.10.2199)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Scherer PE 2006 Adipose tissue: from lipid storage compartment to endocrine organ. Diabetes 55 15371545. (doi:10.2337/db06-0263)

  • Scherer PE, Williams S, Fogliano M, Baldini G & Lodish HF 1995 A novel serum protein similar to C1q, produced exclusively in adipocytes. Journal of Biological Chemistry 270 2674626749. (doi:10.1074/jbc.270.45.26746)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Schulz TJ, Huang TL, Tran TT, Zhang H, Townsend KL, Shadrach JL, Cerletti M, McDougall LE, Giorgadze N & Tchkonia T et al. 2011 Identification of inducible brown adipocyte progenitors residing in skeletal muscle and white fat. PNAS 108 143148. (doi:10.1073/pnas.1010929108)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Schwartz MW, Seeley RJ, Campfield LA, Burn P & Baskin DG 1996 Identification of targets of leptin action in rat hypothalamus. Journal of Clinical Investigation 98 11011106. (doi:10.1172/JCI118891)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Seale P, Bjork B, Yang W, Kajimura S, Chin S, Kuang S, Scime A, Devarakonda S, Conroe HM & Erdjument-Bromage H et al. 2008 PRDM16 controls a brown fat/skeletal muscle switch. Nature 454 961967. (doi:10.1038/nature07182)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Seale P, Conroe HM, Estall J, Kajimura S, Frontini A, Ishibashi J, Cohen P, Cinti S & Spiegelman BM 2011 Prdm16 determines the thermogenic program of subcutaneous white adipose tissue in mice. Journal of Clinical Investigation 121 96105. (doi:10.1172/JCI44271)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Seale P, Kajimura S, Yang W, Chin S, Rohas LM, Uldry M, Tavernier G, Langin D & Spiegelman BM 2007 Transcriptional control of brown fat determination by PRDM16. Cell Metabolism 6 3854. (doi:10.1016/j.cmet.2007.06.001)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Sethi JK & Vidal-Puig AJ 2007 Thematic review series: adipocyte biology. Adipose tissue function and plasticity orchestrate nutritional adaptation. Journal of Lipid Research 48 12531262. (doi:10.1194/jlr.R700005-JLR200)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Sharp LZ, Shinoda K, Ohno H, Scheel DW, Tomoda E, Ruiz L, Hu H, Wang L, Pavlova Z & Gilsanz V et al. 2012 Human BAT possesses molecular signatures that resemble beige/brite cells. PLoS ONE 7 e49452. (doi:10.1371/journal.pone.0049452)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Shi YC, Lau J, Lin Z, Zhang H, Zhai L, Sperk G, Heilbronn R, Mietzsch M, Weger S & Huang XF et al. 2013 Arcuate NPY controls sympathetic output and BAT function via a relay of tyrosine hydroxylase neurons in the PVN. Cell Metabolism 17 236248. (doi:10.1016/j.cmet.2013.01.006)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Shimizu I, Hirota M, Ohboshi C & Shima K 1987 Identification and localization of glucagon-like peptide-1 and its receptor in rat brain. Endocrinology 121 10761082. (doi:10.1210/endo-121-3-1076)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Smith SJ, Cases S, Jensen DR, Chen HC, Sande E, Tow B, Sanan DA, Raber J, Eckel RH & Farese RV Jr 2000 Obesity resistance and multiple mechanisms of triglyceride synthesis in mice lacking Dgat. Nature Genetics 25 8790. (doi:10.1038/75651)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Sobhani I, Bado A, Vissuzaine C, Buyse M, Kermorgant S, Laigneau JP, Attoub S, Lehy T, Henin D & Mignon M et al. 2000 Leptin secretion and leptin receptor in the human stomach. Gut 47 178183. (doi:10.1136/gut.47.2.178)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Stanford KI, Middelbeek RJ, Townsend KL, An D, Nygaard EB, Hitchcox KM, Markan KR, Nakano K, Hirshman MF & Tseng YH et al. 2013 Brown adipose tissue regulates glucose homeostasis and insulin sensitivity. Journal of Clinical Investigation 123 215223. (doi:10.1172/JCI62308)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Steppan CM, Bailey ST, Bhat S, Brown EJ, Banerjee RR, Wright CM, Patel HR, Ahima RS & Lazar MA 2001a The hormone resistin links obesity to diabetes. Nature 409 307312. (doi:10.1038/35053000)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Steppan CM, Brown EJ, Wright CM, Bhat S, Banerjee RR, Dai CY, Enders GH, Silberg DG, Wen X & Wu GD et al. 2001b A family of tissue-specific resistin-like molecules. PNAS 98 502506. (doi:10.1073/pnas.98.2.502)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Sukonina V, Lookene A, Olivecrona T & Olivecrona G 2006 Angiopoietin-like protein 4 converts lipoprotein lipase to inactive monomers and modulates lipase activity in adipose tissue. PNAS 103 1745017455. (doi:10.1073/pnas.0604026103)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Sun K, Kusminski CM, Luby-Phelps K, Spurgin SB, An YA, Wang QA, Holland WL & Scherer PE 2014 Brown adipose tissue derived VEGF-A modulates cold tolerance and energy expenditure. Molecular Metabolism 3 474483. (doi:10.1016/j.molmet.2014.03.010)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Svensson KJ, Long JZ, Jedrychowski MP, Cohen P, Lo JC, Serag S, Kir S, Shinoda K, Tartaglia JA & Rao RR et al. 2016 A secreted Slit2 fragment regulates adipose tissue thermogenesis and metabolic function. Cell Metabolism 23 454466. (doi:10.1016/j.cmet.2016.01.008)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Swierczynski J, Goyke E, Wach L, Pankiewicz A, Kochan Z, Adamonis W, Sledzinski Z & Aleksandrowicz Z 2000 Comparative study of the lipogenic potential of human and rat adipose tissue. Metabolism 49 594599. (doi:10.1016/S0026-0495(00)80033-5)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Tamori Y, Masugi J, Nishino N & Kasuga M 2002 Role of peroxisome proliferator-activated receptor-gamma in maintenance of the characteristics of mature 3T3-L1 adipocytes. Diabetes 51 20452055. (doi:10.2337/diabetes.51.7.2045)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Tan CY & Vidal-Puig A 2008 Adipose tissue expandability: the metabolic problems of obesity may arise from the inability to become more obese. Biochemical Society Transactions 36 935940. (doi:10.1042/BSbib360935)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Tanaka T, Yoshida N, Kishimoto T & Akira S 1997 Defective adipocyte differentiation in mice lacking the C/EBPbeta and/or C/EBPdelta gene. EMBO Journal 16 74327443. (doi:10.1093/emboj/16.24.7432)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Tang QQ, Zhang JW & Daniel Lane M 2004 Sequential gene promoter interactions by C/EBPbeta, C/EBPalpha, and PPARgamma during adipogenesis. Biochemical and Biophysical Research Communications 318 213218. (doi:10.1016/j.bbrc.2004.04.017)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Taygerly JP, McGee LR, Rubenstein SM, Houze JB, Cushing TD, Li Y, Motani A, Chen JL, Frankmoelle W & Ye G et al. 2013 Discovery of INT131: a selective PPARgamma modulator that enhances insulin sensitivity. Bioorganic and Medicinal Chemistry 21 979992. (doi:10.1016/j.bmc.2012.11.058)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Teglund S, McKay C, Schuetz E, van Deursen JM, Stravopodis D, Wang D, Brown M, Bodner S, Grosveld G & Ihle JN 1998 Stat5a and Stat5b proteins have essential and nonessential, or redundant, roles in cytokine responses. Cell 93 841850. (doi:10.1016/S0092-8674(00)81444-0)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Thomas C, Gioiello A, Noriega L, Strehle A, Oury J, Rizzo G, Macchiarulo A, Yamamoto H, Mataki C & Pruzanski M et al. 2009 TGR5-mediated bile acid sensing controls glucose homeostasis. Cell Metabolism 10 167177. (doi:10.1016/j.cmet.2009.08.001)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Thorne A, Lonnqvist F, Apelman J, Hellers G & Arner P 2002 A pilot study of long-term effects of a novel obesity treatment: omentectomy in connection with adjustable gastric banding. International Journal of Obesity and Related Metabolic Disorders 26 193199. (doi:10.1038/sj.ijo.0801871)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Timmons JA, Baar K, Davidsen PK & Atherton PJ 2012 Is irisin a human exercise gene? Nature 488 E9E10; discussion E10E11. (doi:10.1038/nature11364)

  • Tomas E, Tsao TS, Saha AK, Murrey HE, Zhang Cc C, Itani SI, Lodish HF & Ruderman NB 2002 Enhanced muscle fat oxidation and glucose transport by ACRP30 globular domain: acetyl-CoA carboxylase inhibition and AMP-activated protein kinase activation. PNAS 99 1630916313. (doi:10.1073/pnas.222657499)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Tontonoz P, Hu E & Spiegelman BM 1994 Stimulation of adipogenesis in fibroblasts by PPAR gamma 2, a lipid-activated transcription factor. Cell 79 11471156. (doi:10.1016/0092-8674(94)90006-X)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Tran TT, Yamamoto Y, Gesta S & Kahn CR 2008 Beneficial effects of subcutaneous fat transplantation on metabolism. Cell Metabolism 7 410420. (doi:10.1016/j.cmet.2008.04.004)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Trayhurn P, Duncan JS, Hoggard N & Rayner DV 1998 Regulation of leptin production: a dominant role for the sympathetic nervous system? Proceedings of the Nutrition Society 57 413419. (doi:10.1079/PNS19980060)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Trayhurn P, Thurlby PL & James WP 1977 Thermogenic defect in pre-obese ob/ob mice. Nature 266 6062. (doi:10.1038/266060a0)

  • Tsao TS, Murrey HE, Hug C, Lee DH & Lodish HF 2002 Oligomerization state-dependent activation of NF-kappa B signaling pathway by adipocyte complement-related protein of 30 kDa (Acrp30). Journal of Biological Chemistry 277 2935929362. (doi:10.1074/jbc.C200312200)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Tseng YH, Kokkotou E, Schulz TJ, Huang TL, Winnay JN, Taniguchi CM, Tran TT, Suzuki R, Espinoza DO & Yamamoto Y et al. 2008 New role of bone morphogenetic protein 7 in brown adipogenesis and energy expenditure. Nature 454 10001004. (doi:10.1038/nature07221)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Ueta CB, Fernandes GW, Capelo LP, Fonseca TL, Maculan FD, Gouveia CH, Brum PC, Christoffolete MA, Aoki MS & Lancellotti CL et al. 2012 beta(1) Adrenergic receptor is key to cold- and diet-induced thermogenesis in mice. Journal of Endocrinology 214 359365. (doi:10.1530/JOE-12-0155)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Ukropec J, Anunciado RV, Ravussin Y & Kozak LP 2006 Leptin is required for uncoupling protein-1-independent thermogenesis during cold stress. Endocrinology 147 24682480. (doi:10.1210/en.2005-1216)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Uldry M, Yang W, St-Pierre J, Lin J, Seale P & Spiegelman BM 2006 Complementary action of the PGC-1 coactivators in mitochondrial biogenesis and brown fat differentiation. Cell Metabolism 3 333341. (doi:10.1016/j.cmet.2006.04.002)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • van der Lans AA, Hoeks J, Brans B, Vijgen GH, Visser MG, Vosselman MJ, Hansen J, Jorgensen JA, Wu J & Mottaghy FM et al. 2013 Cold acclimation recruits human brown fat and increases nonshivering thermogenesis. Journal of Clinical Investigation 123 33953403. (doi:10.1172/JCI68993)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • van Marken Lichtenbelt WD, Vanhommerig JW, Smulders NM, Drossaerts JM, Kemerink GJ, Bouvy ND, Schrauwen P & Teule GJ 2009 Cold-activated brown adipose tissue in healthy men. New England Journal of Medicine 360 15001508. (doi:10.1056/NEJMoa0808718)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Veniant MM, Hale C, Helmering J, Chen MM, Stanislaus S, Busby J, Vonderfecht S, Xu J & Lloyd DJ 2012 FGF21 promotes metabolic homeostasis via white adipose and leptin in mice. PLoS ONE 7 e40164. (doi:10.1371/journal.pone.0040164)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Veniant MM, Sivits G, Helmering J, Komorowski R, Lee J, Fan W, Moyer C & Lloyd DJ 2015 Pharmacologic effects of FGF21 are independent of the ‘browning’ of white adipose tissue. Cell Metabolism 21 731738. (doi:10.1016/j.cmet.2015.04.019)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Verma S, Li SH, Wang CH, Fedak PW, Li RK, Weisel RD & Mickle DA 2003 Resistin promotes endothelial cell activation: further evidence of adipokine-endothelial interaction. Circulation 108 736740. (doi:10.1161/01.CIR.0000084503.91330.49)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Virtanen KA, Lidell ME, Orava J, Heglind M, Westergren R, Niemi T, Taittonen M, Laine J, Savisto NJ & Enerback S et al. 2009 Functional brown adipose tissue in healthy adults. New England Journal of Medicine 360 15181525. (doi:10.1056/NEJMoa0808949)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Vishvanath L, MacPherson KA, Hepler C, Wang QA, Shao M, Spurgin SB, Wang MY, Kusminski CM, Morley TS & Gupta RK 2016 Pdgfrbeta(+) mural preadipocytes contribute to adipocyte hyperplasia induced by high-fat-diet feeding and prolonged cold exposure in adult mice. Cell Metabolism 23 350359. (doi:10.1016/j.cmet.2015.10.018)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Waki H, Yamauchi T, Kamon J, Ito Y, Uchida S, Kita S, Hara K, Hada Y, Vasseur F & Froguel P et al. 2003 Impaired multimerization of human adiponectin mutants associated with diabetes. Molecular structure and multimer formation of adiponectin. Journal of Biological Chemistry 278 4035240363. (doi:10.1074/jbc.M300365200)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Wang C, Bomberg E, Billington C, Levine A & Kotz CM 2007 Brain-derived neurotrophic factor in the hypothalamic paraventricular nucleus increases energy expenditure by elevating metabolic rate. American Journal of Physiology: Regulatory, Integrative and Comparative Physiology 293 R992R1002. (doi:10.1152/ajpregu.00516.2006)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Wang C, Bomberg E, Billington CJ, Levine AS & Kotz CM 2010 Brain-derived neurotrophic factor (BDNF) in the hypothalamic ventromedial nucleus increases energy expenditure. Brain Research 1336 6677. (doi:10.1016/j.brainres.2010.04.013)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Wang J, Liu R, Hawkins M, Barzilai N & Rossetti L 1998 A nutrient-sensing pathway regulates leptin gene expression in muscle and fat. Nature 393 684688. (doi:10.1038/31474)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Wang ND, Finegold MJ, Bradley A, Ou CN, Abdelsayed SV, Wilde MD, Taylor LR, Wilson DR & Darlington GJ 1995 Impaired energy homeostasis in C/EBP alpha knockout mice. Science 269 11081112. (doi:10.1126/science.7652557)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Wang QA, Tao C, Gupta RK & Scherer PE 2013 Tracking adipogenesis during white adipose tissue development, expansion and regeneration. Nature Medicine 19 13381344. (doi:10.1038/nm.3324)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Wang W, Kissig M, Rajakumari S, Huang L, Lim HW, Won KJ & Seale P 2014 Ebf2 is a selective marker of brown and beige adipogenic precursor cells. PNAS 111 1446614471. (doi:10.1073/pnas.1412685111)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Wang Y, Kim KA, Kim JH & Sul HS 2006 Pref-1, a preadipocyte secreted factor that inhibits adipogenesis. Journal of Nutrition 136 29532956.

  • Wang Y, Lam KS, Xu JY, Lu G, Xu LY, Cooper GJ & Xu A 2005 Adiponectin inhibits cell proliferation by interacting with several growth factors in an oligomerization-dependent manner. Journal of Biological Chemistry 280 1834118347. (doi:10.1074/jbc.M501149200)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Watanabe M, Houten SM, Mataki C, Christoffolete MA, Kim BW, Sato H, Messaddeq N, Harney JW, Ezaki O & Kodama T et al. 2006 Bile acids induce energy expenditure by promoting intracellular thyroid hormone activation. Nature 439 484489. (doi:10.1038/nature04330)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Weisberg SP, McCann D, Desai M, Rosenbaum M, Leibel RL & Ferrante AW Jr 2003 Obesity is associated with macrophage accumulation in adipose tissue. Journal of Clinical Investigation 112 17961808. (doi:10.1172/JCI200319246)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Westerterp-Plantenga MS, Saris WH, Hukshorn CJ & Campfield LA 2001 Effects of weekly administration of pegylated recombinant human OB protein on appetite profile and energy metabolism in obese men. American Journal of Clinical Nutrition 74 426434.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Whittle AJ, Carobbio S, Martins L, Slawik M, Hondares E, Vazquez MJ, Morgan D, Csikasz RI, Gallego R & Rodriguez-Cuenca S et al. 2012 BMP8B increases brown adipose tissue thermogenesis through both central and peripheral actions. Cell 149 871885. (doi:10.1016/j.cell.2012.02.066)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Wu AL, Kolumam G, Stawicki S, Chen Y, Li J, Zavala-Solorio J, Phamluong K, Feng B, Li L & Marsters S et al. 2011 Amelioration of type 2 diabetes by antibody-mediated activation of fibroblast growth factor receptor 1. Science Translational Medicine 3 113ra126. (doi:10.1126/scitranslmed.3002669)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Wu J, Bostrom P, Sparks LM, Ye L, Choi JH, Giang AH, Khandekar M, Virtanen KA, Nuutila P & Schaart G et al. 2012 Beige adipocytes are a distinct type of thermogenic fat cell in mouse and human. Cell 150 366376. (doi:10.1016/j.cell.2012.05.016)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Wu L, Zhou L, Chen C, Gong J, Xu L, Ye J, Li D & Li P 2014 Cidea controls lipid droplet fusion and lipid storage in brown and white adipose tissue. Science China Life Sciences 57 107116. (doi:10.1007/s11427-013-4585-y)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Wu Z, Rosen ED, Brun R, Hauser S, Adelmant G, Troy AE, McKeon C, Darlington GJ & Spiegelman BM 1999 Cross-regulation of C/EBP alpha and PPAR gamma controls the transcriptional pathway of adipogenesis and insulin sensitivity. Molecular Cell 3 151158. (doi:10.1016/S1097-2765(00)80306-8)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Xin X, Zhou L, Reyes CM, Liu F & Dong LQ 2011 APPL1 mediates adiponectin-stimulated p38 MAPK activation by scaffolding the TAK1-MKK3-p38 MAPK pathway. American Journal of Physiology: Endocrinology and Metabolism 300 E103E110. (doi:10.1152/ajpendo.00427.2010)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Xue B, Coulter A, Rim JS, Koza RA & Kozak LP 2005 Transcriptional synergy and the regulation of Ucp1 during brown adipocyte induction in white fat depots. Molecular and Cellular Biology 25 83118322. (doi:10.1128/MCB.25.18.8311-8322.2005)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Xue B, Rim JS, Hogan JC, Coulter AA, Koza RA & Kozak LP 2007 Genetic variability affects the development of brown adipocytes in white fat but not in interscapular brown fat. Journal of Lipid Research 48 4151. (doi:10.1194/jlr.M600287-JLR200)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Yamauchi T, Hara K, Kubota N, Terauchi Y, Tobe K, Froguel P, Nagai R & Kadowaki T 2003 Dual roles of adiponectin/Acrp30 in vivo as an anti-diabetic and anti-atherogenic adipokine. Current Drug Targets: Immune, Endocrine and Metabolic Disorders 3 243254. (doi:10.2174/1568008033340090)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Yamauchi T, Kamon J, Minokoshi Y, Ito Y, Waki H, Uchida S, Yamashita S, Noda M, Kita S & Ueki K et al. 2002 Adiponectin stimulates glucose utilization and fatty-acid oxidation by activating AMP-activated protein kinase. Nature Medicine 8 12881295. (doi:10.1038/nm788)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Yamauchi T, Nio Y, Maki T, Kobayashi M, Takazawa T, Iwabu M, Okada-Iwabu M, Kawamoto S, Kubota N & Kubota T et al. 2007 Targeted disruption of AdipoR1 and AdipoR2 causes abrogation of adiponectin binding and metabolic actions. Nature Medicine 13 332339. (doi:10.1038/nm1557)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Yasruel Z, Cianflone K, Sniderman AD, Rosenbloom M, Walsh M & Rodriguez MA 1991 Effect of acylation stimulating protein on the triacylglycerol synthetic pathway of human adipose tissue. Lipids 26 495499. (doi:10.1007/BF02536592)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Yasuda T, Masaki T, Kakuma T & Yoshimatsu H 2004 Hypothalamic melanocortin system regulates sympathetic nerve activity in brown adipose tissue. Experimental Biology and Medicine 229 235239.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Ye L, Wu J, Cohen P, Kazak L, Khandekar MJ, Jedrychowski MP, Zeng X, Gygi SP & Spiegelman BM 2013 Fat cells directly sense temperature to activate thermogenesis. PNAS 110 1248012485. (doi:10.1073/pnas.1310261110)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Yin D, Clarke SD, Peters JL & Etherton TD 1998 Somatotropin-dependent decrease in fatty acid synthase mRNA abundance in 3T3-F442A adipocytes is the result of a decrease in both gene transcription and mRNA stability. Biochemical Journal 331 815820. (doi:10.1042/bj3310815)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Yoneshiro T, Aita S, Matsushita M, Kayahara T, Kameya T, Kawai Y, Iwanaga T & Saito M 2013 Recruited brown adipose tissue as an antiobesity agent in humans. Journal of Clinical Investigation 123 34043408. (doi:10.1172/JCI67803)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Young P, Arch JR & Ashwell M 1984 Brown adipose tissue in the parametrial fat pad of the mouse. FEBS Letters 167 1014. (doi:10.1016/0014-5793(84)80822-4)

  • Zechner R, Strauss JG, Haemmerle G, Lass A & Zimmermann R 2005 Lipolysis: pathway under construction. Current Opinion in Lipidology 16 333340. (doi:10.1097/01.mol.0000169354.20395.1c)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Zhang JW, Klemm DJ, Vinson C & Lane MD 2004 Role of CREB in transcriptional regulation of CCAAT/enhancer-binding protein beta gene during adipogenesis. Journal of Biological Chemistry 279 44714478. (doi:10.1074/jbc.M311327200)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Zhang X, Yeung DC, Karpisek M, Stejskal D, Zhou ZG, Liu F, Wong RL, Chow WS, Tso AW & Lam KS et al. 2008 Serum FGF21 levels are increased in obesity and are independently associated with the metabolic syndrome in humans. Diabetes 57 12461253. (doi:10.2337/db07-1476)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Zhang Y, Proenca R, Maffei M, Barone M, Leopold L & Friedman JM 1994 Positional cloning of the mouse obese gene and its human homologue. Nature 372 425432. (doi:10.1038/372425a0)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Zhou L, Deepa SS, Etzler JC, Ryu J, Mao X, Fang Q, Liu DD, Torres JM, Jia W & Lechleiter JD et al. 2009 Adiponectin activates AMP-activated protein kinase in muscle cells via APPL1/LKB1-dependent and phospholipase C/Ca2+/Ca2+/calmodulin-dependent protein kinase kinase-dependent pathways. Journal of Biological Chemistry 284 2242622435. (doi:10.1074/jbc.M109.028357)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Zimmermann R, Strauss JG, Haemmerle G, Schoiswohl G, Birner-Gruenberger R, Riederer M, Lass A, Neuberger G, Eisenhaber F & Hermetter A et al. 2004 Fat mobilization in adipose tissue is promoted by adipose triglyceride lipase. Science 306 13831386. (doi:10.1126/science.1100747)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Zingaretti MC, Crosta F, Vitali A, Guerrieri M, Frontini A, Cannon B, Nedergaard J & Cinti S 2009 The presence of UCP1 demonstrates that metabolically active adipose tissue in the neck of adult humans truly represents brown adipose tissue. FASEB Journal 23 31133120. (doi:10.1096/fj.09-133546)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Zuo Y, Qiang L & Farmer SR 2006 Activation of CCAAT/enhancer-binding protein (C/EBP) alpha expression by C/EBP beta during adipogenesis requires a peroxisome proliferator-activated receptor-gamma-associated repression of HDAC1 at the C/ebp alpha gene promoter. Journal of Biological Chemistry 281 79607967. (doi:10.1074/jbc.M510682200)

    • PubMed
    • Search Google Scholar
    • Export Citation

 

  • Collapse
  • Expand
  • Lipid metabolism and mobilization controlled by adipose tissue. Lipogenesis is a process by which carbohydrate is converted into fatty acids, and promotes the biosynthesis of TG and expansion of lipid droplet in adipocytes. Lipolysis, in an opposite way, breaks down TG to free fatty acid (FFA) and glycerol that can be either oxidized or released. The uptake of circulating FFA by liver, muscle and other tissues is a main pathway of lipid mobilization. Both lipogenic and lipolytic pathways are sensitive to nutrition as well as hormones such as insulin, norepinephrine and glucagon. Thus, a subtle regulation of lipogenesis and lipolysis is required for systemic energy homeostasis and insulin sensitivity. AR, adrenergic receptor; cAMP, cyclic adenosine monophosphate; IR, insulin receptor; PKA, protein kinase A.

  • The physiological functions of adipokines. Adipokines, the cytokines derived from adipose tissue, act to regulate insulin sensitivity, inflammation, cardiovascular function, behaviour and cell growth, resulting in the development of obesity-induced metabolic diseases. ASP, acylating simulation protein; FGF21, fibroblast growth factor 21; IL6, interleukin 6; MCP1, monocyte chemoattractant protein 1; PAI1, plasminogen activator inhibitor 1; TNFα, tumour necrosis factor alpha.

  • The regulation of adaptive thermogenesis. Thermogenic programme and browning of WAT are driven by SNS in response to cold, diet and stress. Several hormones such as insulin, leptin, BMP8B, GLP-1 and T3 control adaptive thermogenesis through regulating SNS. Moreover, several key transcription factors such as PRDM16, PGC1α, PPARγ, C/EBPβ and IRF4 assemble to form the transitional machinery of UCP1 and promote UCP1 expression. In addition, adaptive thermogenesis has been shown to be regulated by multiple secreted factors including BMP8B, Slit2, BMP7, vitamin A derivatives, VEGF, T3, bile acids, FGF21, irisin, NPs, enkephalin and macrophages-derived catecholamine. In addition, HDAC1 and miRNAs as well as other intracellular pathways such as p38MAPK, mTORC1, Grb10, MR and TASK1 play important roles in regulating thermogenic program. Double arrow means secretion from adipocytes and in turn action on itself. ADR, adrenergic receptor; MR, mineralocorticoid receptor; NPs, natriuretic peptides; TASK1, Twik-related acid-sensitive K (+) channel; 5-HT, 5-hydroxytryptamine or serotonin neurons.

  • Adams AC, Coskun T, Cheng CC, LS OF, Dubois SL & Kharitonenkov A 2013 Fibroblast growth factor 21 is not required for the antidiabetic actions of the thiazoladinediones. Molecular Metabolism 2 205214. (doi:10.1016/j.molmet.2013.05.005)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Aherne W & Hull D 1966 Brown adipose tissue and heat production in the newborn infant. Journal of Pathology and Bacteriology 91 223234. (doi:10.1002/path.1700910126)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Ahmadian M, Abbott MJ, Tang T, Hudak CS, Kim Y, Bruss M, Hellerstein MK, Lee HY, Samuel VT & Shulman GI et al. 2011 Desnutrin/ATGL is regulated by AMPK and is required for a brown adipose phenotype. Cell Metabolism 13 739748. (doi:10.1016/j.cmet.2011.05.002)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Ali AT, Hochfeld WE, Myburgh R & Pepper MS 2013 Adipocyte and adipogenesis. European Journal of Cell Biology 92 229236. (doi:10.1016/j.ejcb.2013.06.001)

  • Andrade-Oliveira V, Camara NO & Moraes-Vieira PM 2015 Adipokines as drug targets in diabetes and underlying disturbances. Journal of Diabetes Research 2015 681612. (doi:10.1155/2015/681612)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Arch JR 2011 Challenges in beta(3)-adrenoceptor agonist drug development. Therapeutic Advances in Endocrinology and Metabolism 2 5964. (doi:10.1177/2042018811398517)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Armani A, Cinti F, Marzolla V, Morgan J, Cranston GA, Antelmi A, Carpinelli G, Canese R, Pagotto U & Quarta C et al. 2014 Mineralocorticoid receptor antagonism induces browning of white adipose tissue through impairment of autophagy and prevents adipocyte dysfunction in high-fat-diet-fed mice. FASEB Journal 28 37453757. (doi:10.1096/fj.13-245415)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Arvaniti K, Huang Q & Richard D 2001 Effects of leptin and corticosterone on the expression of corticotropin-releasing hormone, agouti-related protein, and proopiomelanocortin in the brain of ob/ob mouse. Neuroendocrinology 73 227236. (doi:10.1159/000054639)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Assimacopoulos-Jeannet F, Brichard S, Rencurel F, Cusin I & Jeanrenaud B 1995 In vivo effects of hyperinsulinemia on lipogenic enzymes and glucose transporter expression in rat liver and adipose tissues. Metabolism 44 228233. (doi:10.1016/0026-0495(95)90270-8)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Awazawa M, Ueki K, Inabe K, Yamauchi T, Kubota N, Kaneko K, Kobayashi M, Iwane A, Sasako T & Okazaki Y et al. 2011 Adiponectin enhances insulin sensitivity by increasing hepatic IRS-2 expression via a macrophage-derived IL-6-dependent pathway. Cell Metabolism 13 401412. (doi:10.1016/j.cmet.2011.02.010)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Bado A, Levasseur S, Attoub S, Kermorgant S, Laigneau JP, Bortoluzzi MN, Moizo L, Lehy T, Guerre-Millo M & Le Marchand-Brustel Y et al. 1998 The stomach is a source of leptin. Nature 394 790793. (doi:10.1038/29547)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Bagchi M, Kim LA, Boucher J, Walshe TE, Kahn CR & D’Amore PA 2013 Vascular endothelial growth factor is important for brown adipose tissue development and maintenance. FASEB Journal 27 32573271. (doi:10.1096/fj.12-221812)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Bamshad M, Song CK & Bartness TJ 1999 CNS origins of the sympathetic nervous system outflow to brown adipose tissue. American Journal of Physiology 276 R1569R1578.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Barbatelli G, Murano I, Madsen L, Hao Q, Jimenez M, Kristiansen K, Giacobino JP, De Matteis R & Cinti S 2010 The emergence of cold-induced brown adipocytes in mouse white fat depots is determined predominantly by white to brown adipocyte transdifferentiation. American Journal of Physiology: Endocrinology and Metabolism 298 E1244E1253. (doi:10.1152/ajpendo.00600.2009)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Barbera MJ, Schluter A, Pedraza N, Iglesias R, Villarroya F & Giralt M 2001 Peroxisome proliferator-activated receptor alpha activates transcription of the brown fat uncoupling protein-1 gene. A link between regulation of the thermogenic and lipid oxidation pathways in the brown fat cell. Journal of Biological Chemistry 276 14861493. (doi:10.1074/jbc.M006246200)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Barneda D, Planas-Iglesias J, Gaspar ML, Mohammadyani D, Prasannan S, Dormann D, Han GS, Jesch SA, Carman GM & Kagan V et al. 2015 The brown adipocyte protein CIDEA promotes lipid droplet fusion via a phosphatidic acid-binding amphipathic helix. eLife 4 e07485. (doi:10.7554/elife.07485)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Bartelt A, Bruns OT, Reimer R, Hohenberg H, Ittrich H, Peldschus K, Kaul MG, Tromsdorf UI, Weller H & Waurisch C et al. 2011 Brown adipose tissue activity controls triglyceride clearance. Nature Medicine 17 200205. (doi:10.1038/nm.2297)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Bartness TJ, Vaughan CH & Song CK 2010 Sympathetic and sensory innervation of brown adipose tissue. International Journal of Obesity 34 (Supplement 1) S36S42. (doi:10.1038/ijo.2010.182)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Bayindir I, Babaeikelishomi R, Kocanova S, Sousa IS, Lerch S, Hardt O, Wild S, Bosio A, Bystricky K & Herzig S et al. 2015 Transcriptional pathways in cPGI2-induced adipocyte progenitor activation for browning. Frontiers in Endocrinology 6 129. (doi:10.3389/fendo.2015.00129)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Beiroa D, Imbernon M, Gallego R, Senra A, Herranz D, Villarroya F, Serrano M, Ferno J, Salvador J & Escalada J et al. 2014 GLP-1 agonism stimulates brown adipose tissue thermogenesis and browning through hypothalamic AMPK. Diabetes 63 33463358. (doi:10.2337/db14-0302)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Benomar Y, Amine H, Crepin D, Al Rifai S, Riffault L, Gertler A & Taouis M 2016 Central resistin/TLR4 impairs adiponectin signaling contributing to insulin and FGF21 resistance. Diabetes 65 913926. (doi:10.2337/db15-1029)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Berry DC, Stenesen D, Zeve D & Graff JM 2013 The developmental origins of adipose tissue. Development 140 39393949. (doi:10.1242/dev.080549)

  • Bi S & Li L 2013 Browning of white adipose tissue: role of hypothalamic signaling. Annals of the New York Academy of Sciences 1302 3034. (doi:10.1111/nyas.12258)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Birnbaum MJ 2003 Lipolysis: more than just a lipase. Journal of Cell Biology 161 10111012. (doi:10.1083/jcb.200306008)

  • Blaza S 1983 Brown adipose tissue in man: a review. Journal of the Royal Society of Medicine 76 213216.

  • Bluher M 2014 Adipokines – removing road blocks to obesity and diabetes therapy. Molecular Metabolism 3 230240. (doi:10.1016/j.molmet.2014.01.005)

  • Bluher M & Mantzoros CS 2015 From leptin to other adipokines in health and disease: facts and expectations at the beginning of the 21st century. Metabolism 64 131145. (doi:10.1016/j.metabol.2014.10.016)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Bordicchia M, Liu D, Amri EZ, Ailhaud G, Dessi-Fulgheri P, Zhang C, Takahashi N, Sarzani R & Collins S 2012 Cardiac natriuretic peptides act via p38 MAPK to induce the brown fat thermogenic program in mouse and human adipocytes. Journal of Clinical Investigation 122 10221036. (doi:10.1172/JCI59701)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Bostrom P, Wu J, Jedrychowski MP, Korde A, Ye L, Lo JC, Rasbach KA, Bostrom EA, Choi JH & Long JZ et al. 2012 A PGC1-alpha-dependent myokine that drives brown-fat-like development of white fat and thermogenesis. Nature 481 463468. (doi:10.1038/nature10777)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Boucher J, Masri B, Daviaud D, Gesta S, Guigne C, Mazzucotelli A, Castan-Laurell I, Tack I, Knibiehler B & Carpene C et al. 2005 Apelin, a newly identified adipokine up-regulated by insulin and obesity. Endocrinology 146 17641771. (doi:10.1210/en.2004-1427)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Brasaemle DL 2007 Thematic review series: adipocyte biology. The perilipin family of structural lipid droplet proteins: stabilization of lipid droplets and control of lipolysis. Journal of Lipid Research 48 25472559. (doi:10.1194/jlr.R700014-JLR200)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Brestoff JR, Kim BS, Saenz SA, Stine RR, Monticelli LA, Sonnenberg GF, Thome JJ, Farber DL, Lutfy K & Seale P et al. 2015 Group 2 innate lymphoid cells promote beiging of white adipose tissue and limit obesity. Nature 519 242246. (doi:10.1038/nature14115)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Cannon B & Nedergaard J 2004 Brown adipose tissue: function and physiological significance. Physiological Reviews 84 277359. (doi:10.1152/physrev.00015.2003)

  • Cano G, Passerin AM, Schiltz JC, Card JP, Morrison SF & Sved AF 2003 Anatomical substrates for the central control of sympathetic outflow to interscapular adipose tissue during cold exposure. Journal of Comparative Neurology 460 303326. (doi:10.1002/cne.10643)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Cao W, Daniel KW, Robidoux J, Puigserver P, Medvedev AV, Bai X, Floering LM, Spiegelman BM & Collins S 2004a p38 mitogen-activated protein kinase is the central regulator of cyclic AMP-dependent transcription of the brown fat uncoupling protein 1 gene. Molecular and Cellular Biology 24 30573067. (doi:10.1128/MCB.24.7.3057-3067.2004)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Cao WH, Fan W & Morrison SF 2004b Medullary pathways mediating specific sympathetic responses to activation of dorsomedial hypothalamus. Neuroscience 126 229240. (doi:10.1016/j.neuroscience.2004.03.013)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Carey AL, Formosa MF, Van Every B, Bertovic D, Eikelis N, Lambert GW, Kalff V, Duffy SJ, Cherk MH & Kingwell BA 2013 Ephedrine activates brown adipose tissue in lean but not obese humans. Diabetologia 56 147155. (doi:10.1007/s00125-012-2748-1)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Carmen GY & Victor SM 2006 Signalling mechanisms regulating lipolysis. Cellular Signalling 18 401408. (doi:10.1016/j.cellsig.2005.08.009)

  • Caro JF, Sinha MK, Kolaczynski JW, Zhang PL & Considine RV 1996 Leptin: the tale of an obesity gene. Diabetes 45 14551462. (doi:10.2337/diab.45.11.1455)

  • Cederberg A, Gronning LM, Ahren B, Tasken K, Carlsson P & Enerback S 2001 FOXC2 is a winged helix gene that counteracts obesity, hypertriglyceridemia, and diet-induced insulin resistance. Cell 106 563573. (doi:10.1016/S0092-8674(01)00474-3)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Chao PT, Yang L, Aja S, Moran TH & Bi S 2011 Knockdown of NPY expression in the dorsomedial hypothalamus promotes development of brown adipocytes and prevents diet-induced obesity. Cell Metabolism 13 573583. (doi:10.1016/j.cmet.2011.02.019)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Chau YY, Bandiera R, Serrels A, Martinez-Estrada OM, Qing W, Lee M, Slight J, Thornburn A, Berry R & McHaffie S et al. 2014 Visceral and subcutaneous fat have different origins and evidence supports a mesothelial source. Nature Cell Biology 16 367375. (doi:10.1038/ncb2922)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Chen KY, Brychta RJ, Linderman JD, Smith S, Courville A, Dieckmann W, Herscovitch P, Millo CM, Remaley A & Lee P et al. 2013 Brown fat activation mediates cold-induced thermogenesis in adult humans in response to a mild decrease in ambient temperature. Journal of Clinical Endocrinology and Metabolism 98 E12181223. (doi:10.1210/jc.2012-4213)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Chen WW, Li L, Yang GY, Li K, Qi XY, Zhu W, Tang Y, Liu H & Boden G 2008 Circulating FGF-21 levels in normal subjects and in newly diagnose patients with Type 2 diabetes mellitus. Experimental and Clinical Endocrinology and Diabetes 116 6568. (doi:10.1055/s-2007-985148)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Cho YW, Hong S, Jin Q, Wang L, Lee JE, Gavrilova O & Ge K 2009 Histone methylation regulator PTIP is required for PPARgamma and C/EBPalpha expression and adipogenesis. Cell Metabolism 10 2739. (doi:10.1016/j.cmet.2009.05.010)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Chondronikola M, Volpi E, Borsheim E, Porter C, Annamalai P, Enerback S, Lidell ME, Saraf MK, Labbe SM & Hurren NM et al. 2014 Brown adipose tissue improves whole-body glucose homeostasis and insulin sensitivity in humans. Diabetes 63 40894099. (doi:10.2337/db14-0746)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Chondronikola M, Volpi E, Borsheim E, Porter C, Saraf MK, Annamalai P, Yfanti C, Chao T, Wong D & Shinoda K et al. 2016 Brown adipose tissue activation is linked to distinct systemic effects on lipid metabolism in humans. Cell Metabolism 23 12001206. (doi:10.1016/j.cmet.2016.04.029)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Chou K & Perry CM 2013 Metreleptin: first global approval. Drugs 73 989997. (doi:10.1007/s40265-013-0074-7)

  • Choy L & Derynck R 2003 Transforming growth factor-beta inhibits adipocyte differentiation by Smad3 interacting with CCAAT/enhancer-binding protein (C/EBP) and repressing C/EBP transactivation function. Journal of Biological Chemistry 278 96099619. (doi:10.1074/jbc.M212259200)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Cleasby ME, Lau Q, Polkinghorne E, Patel SA, Leslie SJ, Turner N, Cooney GJ, Xu A & Kraegen EW 2011 The adaptor protein APPL1 increases glycogen accumulation in rat skeletal muscle through activation of the PI3-kinase signalling pathway. Journal of Endocrinology 210 8192. (doi:10.1530/JOE-11-0039)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Cohen P, Levy JD, Zhang Y, Frontini A, Kolodin DP, Svensson KJ, Lo JC, Zeng X, Ye L & Khandekar MJ et al. 2014 Ablation of PRDM16 and beige adipose causes metabolic dysfunction and a subcutaneous to visceral fat switch. Cell 156 304316. (doi:10.1016/j.cell.2013.12.021)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Coleman DL 1978 Obese and diabetes: two mutant genes causing diabetes-obesity syndromes in mice. Diabetologia 14 141148. (doi:10.1007/BF00429772)

  • Combs TP, Pajvani UB, Berg AH, Lin Y, Jelicks LA, Laplante M, Nawrocki AR, Rajala MW, Parlow AF & Cheeseboro L et al. 2004 A transgenic mouse with a deletion in the collagenous domain of adiponectin displays elevated circulating adiponectin and improved insulin sensitivity. Endocrinology 145 367383. (doi:10.1210/en.2003-1068)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Contreras C, Gonzalez F, Ferno J, Dieguez C, Rahmouni K, Nogueiras R & Lopez M 2015 The brain and brown fat. Annals of Medicine 47 150168. (doi:10.3109/07853890.2014.919727)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Cousin B, Cinti S, Morroni M, Raimbault S, Ricquier D, Penicaud L & Casteilla L 1992 Occurrence of brown adipocytes in rat white adipose tissue: molecular and morphological characterization. Journal of Cell Science 103 931942.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Curat CA, Wegner V, Sengenes C, Miranville A, Tonus C, Busse R & Bouloumie A 2006 Macrophages in human visceral adipose tissue: increased accumulation in obesity and a source of resistin and visfatin. Diabetologia 49 744747. (doi:10.1007/s00125-006-0173-z)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Cypess AM, Chen YC, Sze C, Wang K, English J, Chan O, Holman AR, Tal I, Palmer MR & Kolodny GM et al. 2012 Cold but not sympathomimetics activates human brown adipose tissue in vivo. PNAS 109 1000110005. (doi:10.1073/pnas.1207911109)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Cypess AM, Haft CR, Laughlin MR & Hu HH 2014 Brown fat in humans: consensus points and experimental guidelines. Cell Metabolism 20 408415. (doi:10.1016/j.cmet.2014.07.025)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Cypess AM, Lehman S, Williams G, Tal I, Rodman D, Goldfine AB, Kuo FC, Palmer EL, Tseng YH & Doria A et al. 2009 Identification and importance of brown adipose tissue in adult humans. New England Journal of Medicine 360 15091517. (doi:10.1056/NEJMoa0810780)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Cypess AM, Weiner LS, Roberts-Toler C, Franquet Elia E, Kessler SH, Kahn PA, English J, Chatman K, Trauger SA & Doria A et al. 2015 Activation of human brown adipose tissue by a beta3-adrenergic receptor agonist. Cell Metabolism 21 3338. (doi:10.1016/j.cmet.2014.12.009)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Cypess AM, White AP, Vernochet C, Schulz TJ, Xue R, Sass CA, Huang TL, Roberts-Toler C, Weiner LS & Sze C et al. 2013 Anatomical localization, gene expression profiling and functional characterization of adult human neck brown fat. Nature Medicine 19 635639. (doi:10.1038/nm.3112)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • de Jong JM, Larsson O, Cannon B & Nedergaard J 2015 A stringent validation of mouse adipose tissue identity markers. American Journal of Physiology: Endocrinology and Metabolism 308 E1085E1105. (doi:10.1152/ajpendo.00023.2015)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Degawa-Yamauchi M, Bovenkerk JE, Juliar BE, Watson W, Kerr K, Jones R, Zhu Q & Considine RV 2003 Serum resistin (FIZZ3) protein is increased in obese humans. Journal of Clinical Endocrinology and Metabolism 88 54525455. (doi:10.1210/jc.2002-021808)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Deng Y & Scherer PE 2010 Adipokines as novel biomarkers and regulators of the metabolic syndrome. Annals of the New York Academy of Sciences 1212 E1E19. (doi:10.1111/j.1749-6632.2010.05875.x)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Denzel MS, Scimia MC, Zumstein PM, Walsh K, Ruiz-Lozano P & Ranscht B 2010 T-cadherin is critical for adiponectin-mediated cardioprotection in mice. Journal of Clinical Investigation 120 43424352. (doi:10.1172/JCI43464)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • DePaoli AM, Higgins LS, Henry RR, Mantzoros C, Dunn FL & Group INTS 2014 Can a selective PPARgamma modulator improve glycemic control in patients with type 2 diabetes with fewer side effects compared with pioglitazone? Diabetes Care 37 19181923. (doi:10.2337/dc13-2480)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Dieguez C, Vazquez MJ, Romero A, Lopez M & Nogueiras R 2011 Hypothalamic control of lipid metabolism: focus on leptin, ghrelin and melanocortins. Neuroendocrinology 94 111. (doi:10.1159/000328122)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Dijk W, Beigneux AP, Larsson M, Bensadoun A, Young SG & Kersten S 2016 Angiopoietin-like 4 (ANGPTL4) promotes intracellular degradation of lipoprotein lipase in adipocytes. Journal of Lipid Research 57 16701683. (doi:10.1194/jlr.M067363)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Dimitriadis G, Mitrou P, Lambadiari V, Maratou E & Raptis SA 2011 Insulin effects in muscle and adipose tissue. Diabetes Research and Clinical Practice 93 (Supplement 1) S52S59. (doi:10.1016/S0168-8227(11)70014-6)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Dodd GT, Decherf S, Loh K, Simonds SE, Wiede F, Balland E, Merry TL, Munzberg H, Zhang ZY & Kahn BB et al. 2015 Leptin and insulin act on POMC neurons to promote the browning of white fat. Cell 160 88104. (doi:10.1016/j.cell.2014.12.022)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Doring H, Schwarzer K, Nuesslein-Hildesheim B & Schmidt I 1998 Leptin selectively increases energy expenditure of food-restricted lean mice. International Journal of Obesity and Related Metabolic Disorders 22 8388. (doi:10.1038/sj.ijo.0800547)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Eissing L, Scherer T, Todter K, Knippschild U, Greve JW, Buurman WA, Pinnschmidt HO, Rensen SS, Wolf AM & Bartelt A et al. 2013 De novo lipogenesis in human fat and liver is linked to ChREBP-beta and metabolic health. Nature Communications 4 1528. (doi:10.1038/ncomms2537)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • El-Jack AK, Hamm JK, Pilch PF & Farmer SR 1999 Reconstitution of insulin-sensitive glucose transport in fibroblasts requires expression of both PPARgamma and C/EBPalpha. Journal of Biological Chemistry 274 79467951. (doi:10.1074/jbc.274.12.7946)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Emanuelli B, Vienberg SG, Smyth G, Cheng C, Stanford KI, Arumugam M, Michael MD, Adams AC, Kharitonenkov A & Kahn CR 2014 Interplay between FGF21 and insulin action in the liver regulates metabolism. Journal of Clinical Investigation 124 515527. (doi:10.1172/JCI67353)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Etherton TD 2000 The biology of somatotropin in adipose tissue growth and nutrient partitioning. Journal of Nutrition 130 26232625.

  • Fabbrini E, Tamboli RA, Magkos F, Marks-Shulman PA, Eckhauser AW, Richards WO, Klein S & Abumrad NN 2010 Surgical removal of omental fat does not improve insulin sensitivity and cardiovascular risk factors in obese adults. Gastroenterology 139 448455. (doi:10.1053/j.gastro.2010.04.056)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Fang X, Palanivel R, Cresser J, Schram K, Ganguly R, Thong FS, Tuinei J, Xu A, Abel ED & Sweeney G 2010 An APPL1-AMPK signaling axis mediates beneficial metabolic effects of adiponectin in the heart. American Journal of Physiology: Endocrinology and Metabolism 299 E721E729. (doi:10.1152/ajpendo.00086.2010)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Farmer SR 2005 Regulation of PPARgamma activity during adipogenesis. International Journal of Obesity 29 (Supplement 1) S13S16. (doi:10.1038/sj.ijo.0802907)

  • Farmer SR 2006 Transcriptional control of adipocyte formation. Cell Metabolism 4 263273. (doi:10.1016/j.cmet.2006.07.001)

  • Farooqi IS, Jebb SA, Langmack G, Lawrence E, Cheetham CH, Prentice AM, Hughes IA, McCamish MA & O’Rahilly S 1999 Effects of recombinant leptin therapy in a child with congenital leptin deficiency. New England Journal of Medicine 341 879884. (doi:10.1056/NEJM199909163411204)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Fasshauer M & Bluher M 2015 Adipokines in health and disease. Trends in Pharmacological Sciences 36 461470. (doi:10.1016/j.tips.2015.04.014)

  • Fedorenko A, Lishko PV & Kirichok Y 2012 Mechanism of fatty-acid-dependent UCP1 uncoupling in brown fat mitochondria. Cell 151 400413. (doi:10.1016/j.cell.2012.09.010)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Feldmann HM, Golozoubova V, Cannon B & Nedergaard J 2009 UCP1 ablation induces obesity and abolishes diet-induced thermogenesis in mice exempt from thermal stress by living at thermoneutrality. Cell Metabolism 9 203209. (doi:10.1016/j.cmet.2008.12.014)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Ferre P & Foufelle F 2007 SREBP-1c transcription factor and lipid homeostasis: clinical perspective. Hormone Research 68 7282. (doi:10.1159/000100426)

  • Fielding BA & Frayn KN 1998 Lipoprotein lipase and the disposition of dietary fatty acids. British Journal of Nutrition 80 495502.

  • Filippidis G, Liakopoulos V, Mertens PR, Kiropoulos T, Stakias N, Verikouki C, Patsidis E, Koukoulis G & Stefanidis I 2005 Resistin serum levels are increased but not correlated with insulin resistance in chronic hemodialysis patients. Blood Purification 23 421428. (doi:10.1159/000088017)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Fischer AW, Hoefig CS, Abreu-Vieira G, de Jong JM, Petrovic N, Mittag J, Cannon B & Nedergaard J 2016 Leptin raises defended body temperature without activating thermogenesis. Cell Reports 14 16211631. (doi:10.1016/j.celrep.2016.01.041)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Fisher FM, Kleiner S, Douris N, Fox EC, Mepani RJ, Verdeguer F, Wu J, Kharitonenkov A, Flier JS & Maratos-Flier E et al. 2012 FGF21 regulates PGC-1alpha and browning of white adipose tissues in adaptive thermogenesis. Genes and Development 26 271281. (doi:10.1101/gad.177857.111)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Foltz IN, Hu S, King C, Wu X, Yang C, Wang W, Weiszmann J, Stevens J, Chen JS & Nuanmanee N et al. 2012 Treating diabetes and obesity with an FGF21-mimetic antibody activating the betaKlotho/FGFR1c receptor complex. Science Translational Medicine 4 162ra153. (doi:10.1126/scitranslmed.3004690)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Foster MT, Shi H, Seeley RJ & Woods SC 2011 Removal of intra-abdominal visceral adipose tissue improves glucose tolerance in rats: role of hepatic triglyceride storage. Physiology and Behavior 104 845854. (doi:10.1016/j.physbeh.2011.04.064)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Foster MT, Softic S, Caldwell J, Kohli R, de Kloet AD & Seeley RJ 2013 Subcutaneous adipose tissue transplantation in diet-induced obese mice attenuates metabolic dysregulation while removal exacerbates it. Physiological Reports 1 e00015 . (doi:10.1002/phy2.15)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Frayn KN 2002 Adipose tissue as a buffer for daily lipid flux. Diabetologia 45 12011210. (doi:10.1007/s00125-002-0873-y)

  • Friedman JM & Halaas JL 1998 Leptin and the regulation of body weight in mammals. Nature 395 763770. (doi:10.1038/27376)

  • Gerber M, Boettner A, Seidel B, Lammert A, Bar J, Schuster E, Thiery J, Kiess W & Kratzsch J 2005 Serum resistin levels of obese and lean children and adolescents: biochemical analysis and clinical relevance. Journal of Clinical Endocrinology and Metabolism 90 45034509. (doi:10.1210/jc.2005-0437)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Ghorbani M & Himms-Hagen J 1997 Appearance of brown adipocytes in white adipose tissue during CL 316,243-induced reversal of obesity and diabetes in Zucker fa/fa rats. International Journal of Obesity and Related Metabolic Disorders 21 465475. (doi:10.1038/sj.ijo.0800432)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Gil-Campos M, Canete RR & Gil A 2004 Adiponectin, the missing link in insulin resistance and obesity. Clinical Nutrition 23 963974. (doi:10.1016/j.clnu.2004.04.010)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Gilsanz V, Hu HH & Kajimura S 2013 Relevance of brown adipose tissue in infancy and adolescence. Pediatric Research 73 39. (doi:10.1038/pr.2012.141)

  • Giralt M, Cereijo R & Villarroya F 2016 Adipokines and the endocrine role of adipose tissues. Handbook of Experimental Pharmacology 233 265282. (doi:10.1007/164_2015_6)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Golden PL, Maccagnan TJ & Pardridge WM 1997 Human blood–brain barrier leptin receptor. Binding and endocytosis in isolated human brain microvessels. Journal of Clinical Investigation 99 1418. (doi:10.1172/JCI119125)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Gong J, Sun Z & Li P 2009 CIDE proteins and metabolic disorders. Current Opinion in Lipidology 20 121126. (doi:10.1097/MOL.0b013e328328d0bb)

  • Gong J, Sun Z, Wu L, Xu W, Schieber N, Xu D, Shui G, Yang H, Parton RG & Li P 2011 Fsp27 promotes lipid droplet growth by lipid exchange and transfer at lipid droplet contact sites. Journal of Cell Biology 195 953963. (doi:10.1083/jcb.201104142)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Goralski KB, McCarthy TC, Hanniman EA, Zabel BA, Butcher EC, Parlee SD, Muruganandan S & Sinal CJ 2007 Chemerin, a novel adipokine that regulates adipogenesis and adipocyte metabolism. Journal of Biological Chemistry 282 2817528188. (doi:10.1074/jbc.M700793200)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Guerra C, Koza RA, Yamashita H, Walsh K & Kozak LP 1998 Emergence of brown adipocytes in white fat in mice is under genetic control. Effects on body weight and adiposity. Journal of Clinical Investigation 102 412420. (doi:10.1172/JCI3155)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Guilherme A, Virbasius JV, Puri V & Czech MP 2008 Adipocyte dysfunctions linking obesity to insulin resistance and type 2 diabetes. Nature Reviews Molecular Cell Biology 9 367377. (doi:10.1038/nrm2391)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Gunawardana SC & Piston DW 2012 Reversal of type 1 diabetes in mice by brown adipose tissue transplant. Diabetes 61 674682. (doi:10.2337/db11-0510)

  • Haagsman HP, de Haas CG, Geelen MJ & van Golde LM 1982 Regulation of triacylglycerol synthesis in the liver. Modulation of diacylglycerol acyltransferase activity in vitro. Journal of Biological Chemistry 257 1059310598.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Haemmerle G, Lass A, Zimmermann R, Gorkiewicz G, Meyer C, Rozman J, Heldmaier G, Maier R, Theussl C & Eder S et al. 2006 Defective lipolysis and altered energy metabolism in mice lacking adipose triglyceride lipase. Science 312 734737. (doi:10.1126/science.1123965)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Haemmerle G, Zimmermann R, Hayn M, Theussl C, Waeg G, Wagner E, Sattler W, Magin TM, Wagner EF & Zechner R 2002 Hormone-sensitive lipase deficiency in mice causes diglyceride accumulation in adipose tissue, muscle, and testis. Journal of Biological Chemistry 277 48064815. (doi:10.1074/jbc.M110355200)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Halaas JL, Gajiwala KS, Maffei M, Cohen SL, Chait BT, Rabinowitz D, Lallone RL, Burley SK & Friedman JM 1995 Weight-reducing effects of the plasma protein encoded by the obese gene. Science 269 543546. (doi:10.1126/science.7624777)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Haluzik M, Parizkova J & Haluzik MM 2004 Adiponectin and its role in the obesity-induced insulin resistance and related complications. Physiological Research 53 123129.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Hansen GH, Niels-Christiansen LL & Danielsen EM 2008 Leptin and the obesity receptor (OB-R) in the small intestine and colon: a colocalization study. Journal of Histochemistry and Cytochemistry 56 677685. (doi:10.1369/jhc.2008.950782)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Harlan SM, Morgan DA, Agassandian K, Guo DF, Cassell MD, Sigmund CD, Mark AL & Rahmouni K 2011 Ablation of the leptin receptor in the hypothalamic arcuate nucleus abrogates leptin-induced sympathetic activation. Circulation Research 108 808812. (doi:10.1161/CIRCRESAHA.111.240226)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Harms M & Seale P 2013 Brown and beige fat: development, function and therapeutic potential. Nature Medicine 19 12521263. (doi:10.1038/nm.3361)

  • Harms MJ, Ishibashi J, Wang W, Lim HW, Goyama S, Sato T, Kurokawa M, Won KJ & Seale P 2014 Prdm16 is required for the maintenance of brown adipocyte identity and function in adult mice. Cell Metabolism 19 593604. (doi:10.1016/j.cmet.2014.03.007)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Harris CA, Haas JT, Streeper RS, Stone SJ, Kumari M, Yang K, Han X, Brownell N, Gross RW & Zechner R et al. 2011 DGAT enzymes are required for triacylglycerol synthesis and lipid droplets in adipocytes. Journal of Lipid Research 52 657667. (doi:10.1194/jlr.M013003)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Hasegawa G, Ohta M, Ichida Y, Obayashi H, Shigeta M, Yamasaki M, Fukui M, Yoshikawa T & Nakamura N 2005 Increased serum resistin levels in patients with type 2 diabetes are not linked with markers of insulin resistance and adiposity. Acta Diabetologica 42 104109. (doi:10.1007/s00592-005-0187-x)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Hegele RA, Cao H, Frankowski C, Mathews ST & Leff T 2002 PPARG F388L, a transactivation-deficient mutant, in familial partial lipodystrophy. Diabetes 51 35863590. (doi:10.2337/diabetes.51.12.3586)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Herman MA, Peroni OD, Villoria J, Schon MR, Abumrad NA, Bluher M, Klein S & Kahn BB 2012 A novel ChREBP isoform in adipose tissue regulates systemic glucose metabolism. Nature 484 333338. (doi:10.1038/nature10986)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Heymsfield SB, Greenberg AS, Fujioka K, Dixon RM, Kushner R, Hunt T, Lubina JA, Patane J, Self B & Hunt P et al. 1999 Recombinant leptin for weight loss in obese and lean adults: a randomized, controlled, dose-escalation trial. JAMA 282 15681575. (doi:10.1001/jama.282.16.1568)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Higgins LS & Depaoli AM 2010 Selective peroxisome proliferator-activated receptor gamma (PPARgamma) modulation as a strategy for safer therapeutic PPARgamma activation. American Journal of Clinical Nutrition 91 267S272S. (doi:10.3945/ajcn.2009.28449E)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Himms-Hagen J 1997 On raising energy expenditure in ob/ob mice. Science 276 11321133. (doi:10.1126/science.276.5315.1132)

  • Himms-Hagen J, Cui J, Danforth E Jr, Taatjes DJ, Lang SS, Waters BL & Claus TH 1994 Effect of CL-316,243, a thermogenic beta 3-agonist, on energy balance and brown and white adipose tissues in rats. American Journal of Physiology 266 R1371R1382.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Himms-Hagen J, Melnyk A, Zingaretti MC, Ceresi E, Barbatelli G & Cinti S 2000 Multilocular fat cells in WAT of CL-316243-treated rats derive directly from white adipocytes. American Journal of Physiology: Cell Physiology 279 C670C681.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Hoffstedt J, Arvidsson E, Sjolin E, Wahlen K & Arner P 2004 Adipose tissue adiponectin production and adiponectin serum concentration in human obesity and insulin resistance. Journal of Clinical Endocrinology and Metabolism 89 13911396. (doi:10.1210/jc.2003-031458)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Hogberg H, Engblom L, Ekdahl A, Lidell V, Walum E & Alberts P 2006 Temperature dependence of O2 consumption; opposite effects of leptin and etomoxir on respiratory quotient in mice. Obesity 14 673682. (doi:10.1038/oby.2006.76)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Holland WL, Miller RA, Wang ZV, Sun K, Barth BM, Bui HH, Davis KE, Bikman BT, Halberg N & Rutkowski JM et al. 2011 Receptor-mediated activation of ceramidase activity initiates the pleiotropic actions of adiponectin. Nature Medicine 17 5563. (doi:10.1038/nm.2277)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Hondares E, Gallego-Escuredo JM, Flachs P, Frontini A, Cereijo R, Goday A, Perugini J, Kopecky P, Giralt M & Cinti S et al. 2014 Fibroblast growth factor-21 is expressed in neonatal and pheochromocytoma-induced adult human brown adipose tissue. Metabolism 63 312317. (doi:10.1016/j.metabol.2013.11.014)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Hondares E, Iglesias R, Giralt A, Gonzalez FJ, Giralt M, Mampel T & Villarroya F 2011 Thermogenic activation induces FGF21 expression and release in brown adipose tissue. Journal of Biological Chemistry 286 1298312990. (doi:10.1074/jbc.M110.215889)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Hondares E, Rosell M, Gonzalez FJ, Giralt M, Iglesias R & Villarroya F 2010 Hepatic FGF21 expression is induced at birth via PPARalpha in response to milk intake and contributes to thermogenic activation of neonatal brown fat. Cell Metabolism 11 206212. (doi:10.1016/j.cmet.2010.02.001)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Hotta Y, Nakamura H, Konishi M, Murata Y, Takagi H, Matsumura S, Inoue K, Fushiki T & Itoh N 2009 Fibroblast growth factor 21 regulates lipolysis in white adipose tissue but is not required for ketogenesis and triglyceride clearance in liver. Endocrinology 150 46254633. (doi:10.1210/en.2009-0119)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Hui X, Gu P, Zhang J, Nie T, Pan Y, Wu D, Feng T, Zhong C, Wang Y & Lam KS et al. 2015 Adiponectin enhances cold-induced browning of subcutaneous adipose tissue via promoting M2 macrophage proliferation. Cell Metabolism 22 279290. (doi:10.1016/j.cmet.2015.06.004)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Hui X, Lam KS, Vanhoutte PM & Xu A 2012 Adiponectin and cardiovascular health: an update. British Journal of Pharmacology 165 574590. (doi:10.1111/j.1476-5381.2011.01395.x)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Ibrahim MM 2010 Subcutaneous and visceral adipose tissue: structural and functional differences. Obesity Reviews 11 1118. (doi:10.1111/j.1467-789X.2009.00623.x)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Imai T, Takakuwa R, Marchand S, Dentz E, Bornert JM, Messaddeq N, Wendling O, Mark M, Desvergne B & Wahli W et al. 2004 Peroxisome proliferator-activated receptor gamma is required in mature white and brown adipocytes for their survival in the mouse. PNAS 101 45434547. (doi:10.1073/pnas.0400356101)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Iqbal N, Seshadri P, Stern L, Loh J, Kundu S, Jafar T & Samaha FF 2005 Serum resistin is not associated with obesity or insulin resistance in humans. European Review for Medical and Pharmacological Sciences 9 161165.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Ishibashi J & Seale P 2010 Medicine. Beige can be slimming. Science 328 11131114. (doi:10.1126/science.1190816)

  • Itoh N 2010 Hormone-like (endocrine) Fgfs: their evolutionary history and roles in development, metabolism, and disease. Cell and Tissue Research 342 111. (doi:10.1007/s00441-010-1024-2)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Iwabu M, Yamauchi T, Okada-Iwabu M, Sato K, Nakagawa T, Funata M, Yamaguchi M, Namiki S, Nakayama R & Tabata M et al. 2010 Adiponectin and AdipoR1 regulate PGC-1alpha and mitochondria by Ca(2+) and AMPK/SIRT1. Nature 464 13131319. (doi:10.1038/nature08991)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Jacene HA, Cohade CC, Zhang Z & Wahl RL 2011 The relationship between patients’ serum glucose levels and metabolically active brown adipose tissue detected by PET/CT. Molecular Imaging and Biology 13 12781283. (doi:10.1007/s11307-010-0379-9)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Jamaluddin MS, Weakley SM, Yao Q & Chen C 2012 Resistin: functional roles and therapeutic considerations for cardiovascular disease. British Journal of Pharmacology 165 622632. (doi:10.1111/j.1476-5381.2011.01369.x)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Jeanson Y, Carriere A & Casteilla L 2015 A new role for browning as a redox and stress adaptive mechanism? Frontiers in Endocrinology 6 158. (doi:10.3389/fendo.2015.00158)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Jedrychowski MP, Wrann CD, Paulo JA, Gerber KK, Szpyt J, Robinson MM, Nair KS, Gygi SP & Spiegelman BM 2015 Detection and quantitation of circulating human irisin by tandem mass spectrometry. Cell Metabolism 22 734740. (doi:10.1016/j.cmet.2015.08.001)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Jespersen NZ, Larsen TJ, Peijs L, Daugaard S, Homoe P, Loft A, de Jong J, Mathur N, Cannon B & Nedergaard J et al. 2013 A classical brown adipose tissue mRNA signature partly overlaps with brite in the supraclavicular region of adult humans. Cell Metabolism 17 798805. (doi:10.1016/j.cmet.2013.04.011)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Jimenez MA, Akerblad P, Sigvardsson M & Rosen ED 2007 Critical role for Ebf1 and Ebf2 in the adipogenic transcriptional cascade. Molecular and Cellular Biology 27 743757. (doi:10.1128/MCB.01557-06)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Kadowaki T, Yamauchi T, Kubota N, Hara K, Ueki K & Tobe K 2006 Adiponectin and adiponectin receptors in insulin resistance, diabetes, and the metabolic syndrome. Journal of Clinical Investigation 116 17841792. (doi:10.1172/JCI29126)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Kaiyala KJ, Ogimoto K, Nelson JT, Schwartz MW & Morton GJ 2015 Leptin signaling is required for adaptive changes in food intake, but not energy expenditure, in response to different thermal conditions. PLoS ONE 10 e0119391. (doi:10.1371/journal.pone.0119391)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Kajimura D, Lee HW, Riley KJ, Arteaga-Solis E, Ferron M, Zhou B, Clarke CJ, Hannun YA, DePinho RA & Guo XE et al. 2013 Adiponectin regulates bone mass via opposite central and peripheral mechanisms through FoxO1. Cell Metabolism 17 901915. (doi:10.1016/j.cmet.2013.04.009)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Kajimura S, Seale P, Kubota K, Lunsford E, Frangioni JV, Gygi SP & Spiegelman BM 2009 Initiation of myoblast to brown fat switch by a PRDM16-C/EBP-beta transcriptional complex. Nature 460 11541158. (doi:10.1038/nature08262)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Kajimura S, Seale P, Tomaru T, Erdjument-Bromage H, Cooper MP, Ruas JL, Chin S, Tempst P, Lazar MA & Spiegelman BM 2008 Regulation of the brown and white fat gene programs through a PRDM16/CtBP transcriptional complex. Genes and Development 22 13971409. (doi:10.1101/gad.1666108)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Kanda H, Tateya S, Tamori Y, Kotani K, Hiasa K, Kitazawa R, Kitazawa S, Miyachi H, Maeda S & Egashira K et al. 2006 MCP-1 contributes to macrophage infiltration into adipose tissue, insulin resistance, and hepatic steatosis in obesity. Journal of Clinical Investigation 116 14941505. (doi:10.1172/JCI26498)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Kelly LJ, Vicario PP, Thompson GM, Candelore MR, Doebber TW, Ventre J, Wu MS, Meurer R, Forrest MJ & Conner MW et al. 1998 Peroxisome proliferator-activated receptors gamma and alpha mediate in vivo regulation of uncoupling protein (UCP-1, UCP-2, UCP-3) gene expression. Endocrinology 139 49204927. (doi:10.1210/en.139.12.4920)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Kersten S 2014 Physiological regulation of lipoprotein lipase. Biochimica et Biophysica Acta 1841 919933. (doi:10.1016/j.bbalip.2014.03.013)

  • Kiefer FW, Vernochet C, O’Brien P, Spoerl S, Brown JD, Nallamshetty S, Zeyda M, Stulnig TM, Cohen DE & Kahn CR et al. 2012 Retinaldehyde dehydrogenase 1 regulates a thermogenic program in white adipose tissue. Nature Medicine 18 918925. (doi:10.1038/nm.2757)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Kim KH, Jeong YT, Oh H, Kim SH, Cho JM, Kim YN, Kim SS, Kim do H, Hur KY & Kim HK et al. 2013 Autophagy deficiency leads to protection from obesity and insulin resistance by inducing Fgf21 as a mitokine. Nature Medicine 19 8392. (doi:10.1038/nm.3014)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Kintscher U & Goebel M 2009 INT-131, a PPARgamma agonist for the treatment of type 2 diabetes. Current Opinion in Investigational Drugs 10 381387.

  • Kleiner S, Mepani RJ, Laznik D, Ye L, Jurczak MJ, Jornayvaz FR, Estall JL, Chatterjee Bhowmick D, Shulman GI & Spiegelman BM 2012 Development of insulin resistance in mice lacking PGC-1alpha in adipose tissues. PNAS 109 96359640. (doi:10.1073/pnas.1207287109)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Kong X, Banks A, Liu T, Kazak L, Rao RR, Cohen P, Wang X, Yu S, Lo JC & Tseng YH et al. 2014 IRF4 is a key thermogenic transcriptional partner of PGC-1alpha. Cell 158 6983. (doi:10.1016/j.cell.2014.04.049)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Kopecky J, Clarke G, Enerback S, Spiegelman B & Kozak LP 1995 Expression of the mitochondrial uncoupling protein gene from the aP2 gene promoter prevents genetic obesity. Journal of Clinical Investigation 96 29142923. (doi:10.1172/JCI118363)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Koutnikova H, Cock TA, Watanabe M, Houten SM, Champy MF, Dierich A & Auwerx J 2003 Compensation by the muscle limits the metabolic consequences of lipodystrophy in PPAR gamma hypomorphic mice. PNAS 100 1445714462. (doi:10.1073/pnas.2336090100)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Kroker AJ & Bruning JB 2015 Review of the structural and dynamic mechanisms of PPARgamma partial agonism. PPAR Research 2015 816856. (doi:10.1155/2015/816856)

  • Kubota N, Yano W, Kubota T, Yamauchi T, Itoh S, Kumagai H, Kozono H, Takamoto I, Okamoto S & Shiuchi T et al. 2007 Adiponectin stimulates AMP-activated protein kinase in the hypothalamus and increases food intake. Cell Metabolism 6 5568. (doi:10.1016/j.cmet.2007.06.003)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Kumano S, Matsumoto H, Takatsu Y, Noguchi J, Kitada C & Ohtaki T 2003 Changes in hypothalamic expression levels of galanin-like peptide in rat and mouse models support that it is a leptin-target peptide. Endocrinology 144 26342643. (doi:10.1210/en.2002-221113)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Kuriyama H, Shimomura I, Kishida K, Kondo H, Furuyama N, Nishizawa H, Maeda N, Matsuda M, Nagaretani H & Kihara S et al. 2002 Coordinated regulation of fat-specific and liver-specific glycerol channels, aquaporin adipose and aquaporin 9. Diabetes 51 29152921. (doi:10.2337/diabetes.51.10.2915)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Lafontan M & Langin D 2009 Lipolysis and lipid mobilization in human adipose tissue. Progress in Lipid Research 48 275297. (doi:10.1016/j.plipres.2009.05.001)

  • Lago F, Gomez R, Gomez-Reino JJ, Dieguez C & Gualillo O 2009 Adipokines as novel modulators of lipid metabolism. Trends in Biochemical Sciences 34 500510. (doi:10.1016/j.tibs.2009.06.008)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Langin D 2006 Adipose tissue lipolysis as a metabolic pathway to define pharmacological strategies against obesity and the metabolic syndrome. Pharmacological Research 53 482491. (doi:10.1016/j.phrs.2006.03.009)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Langin D & Arner P 2006 Importance of TNFalpha and neutral lipases in human adipose tissue lipolysis. Trends in Endocrinology and Metabolism 17 314320. (doi:10.1016/j.tem.2006.08.003)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Laviola L, Perrini S, Cignarelli A, Natalicchio A, Leonardini A, De Stefano F, Cuscito M, De Fazio M, Memeo V & Neri V et al. 2006 Insulin signaling in human visceral and subcutaneous adipose tissue in vivo. Diabetes 55 952961. (doi:10.2337/diabetes.55.04.06.db05-1414)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Le Lay S, Boucher J, Rey A, Castan-Laurell I, Krief S, Ferre P, Valet P & Dugail I 2001 Decreased resistin expression in mice with different sensitivities to a high-fat diet. Biochemical and Biophysical Research Communications 289 564567. (doi:10.1006/bbrc.2001.6015)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Lee GH, Proenca R, Montez JM, Carroll KM, Darvishzadeh JG, Lee JI & Friedman JM 1996 Abnormal splicing of the leptin receptor in diabetic mice. Nature 379 632635. (doi:10.1038/379632a0)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Lee JE & Ge K 2014 Transcriptional and epigenetic regulation of PPARgamma expression during adipogenesis. Cell and Bioscience 4 29. (doi:10.1186/2045-3701-4-29)

  • Lee JH, Bullen JW Jr, Stoyneva VL & Mantzoros CS 2005 Circulating resistin in lean, obese, and insulin-resistant mouse models: lack of association with insulinemia and glycemia. American Journal of Physiology: Endocrinology and Metabolism 288 E625E632. (doi:10.1152/ajpendo.00184.2004)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Lee JH, Chan JL, Yiannakouris N, Kontogianni M, Estrada E, Seip R, Orlova C & Mantzoros CS 2003 Circulating resistin levels are not associated with obesity or insulin resistance in humans and are not regulated by fasting or leptin administration: cross-sectional and interventional studies in normal, insulin-resistant, and diabetic subjects. Journal of Clinical Endocrinology and Metabolism 88 48484856. (doi:10.1210/jc.2003-030519)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Lee MW, Odegaard JI, Mukundan L, Qiu Y, Molofsky AB, Nussbaum JC, Yun K, Locksley RM & Chawla A 2015a Activated type 2 innate lymphoid cells regulate beige fat biogenesis. Cell 160 7487. (doi:10.1016/j.cell.2014.12.011)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Lee YH, Petkova AP, Konkar AA & Granneman JG 2015b Cellular origins of cold-induced brown adipocytes in adult mice. FASEB Journal 29 286299. (doi:10.1096/fj.14-263038)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Lee P, Greenfield JR, Ho KK & Fulham MJ 2010 A critical appraisal of the prevalence and metabolic significance of brown adipose tissue in adult humans. American Journal of Physiology: Endocrinology and Metabolism 299 E601E606. (doi:10.1152/ajpendo.00298.2010)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Lee P, Linderman JD, Smith S, Brychta RJ, Wang J, Idelson C, Perron RM, Werner CD, Phan GQ & Kammula US et al. 2014a Irisin and FGF21 are cold-induced endocrine activators of brown fat function in humans. Cell Metabolism 19 302309. (doi:10.1016/j.cmet.2013.12.017)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Lee P, Werner CD, Kebebew E & Celi FS 2014b Functional thermogenic beige adipogenesis is inducible in human neck fat. International Journal of Obesity 38 170176. (doi:10.1038/ijo.2013.82)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Lee YH, Petkova AP, Mottillo EP & Granneman JG 2012 In vivo identification of bipotential adipocyte progenitors recruited by beta3-adrenoceptor activation and high-fat feeding. Cell Metabolism 15 480491. (doi:10.1016/j.cmet.2012.03.009)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Lefterova MI & Lazar MA 2009 New developments in adipogenesis. Trends in Endocrinology and Metabolism 20 107114. (doi:10.1016/j.tem.2008.11.005)

  • Lefterova MI, Zhang Y, Steger DJ, Schupp M, Schug J, Cristancho A, Feng D, Zhuo D, Stoeckert CJ Jr & Liu XS et al. 2008 PPARgamma and C/EBP factors orchestrate adipocyte biology via adjacent binding on a genome-wide scale. Genes and Development 22 29412952. (doi:10.1101/gad.1709008)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Lepper C & Fan CM 2010 Inducible lineage tracing of Pax7-descendant cells reveals embryonic origin of adult satellite cells. Genesis 48 424436. (doi:10.1002/dvg.20630)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Letexier D, Pinteur C, Large V, Frering V & Beylot M 2003 Comparison of the expression and activity of the lipogenic pathway in human and rat adipose tissue. Journal of Lipid Research 44 21272134. (doi:10.1194/jlr.M300235-JLR200)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Li F, Wu R, Cui X, Zha L, Yu L, Shi H & Xue B 2016 Histone deacetylase 1 (HDAC1) negatively regulates thermogenic program in brown adipocytes via coordinated regulation of histone H3 lysine 27 (H3K27) deacetylation and methylation. Journal of Biological Chemistry 291 45234536. (doi:10.1074/jbc.M115.677930)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Liao GY, An JJ, Gharami K, Waterhouse EG, Vanevski F, Jones KR & Xu B 2012 Dendritically targeted Bdnf mRNA is essential for energy balance and response to leptin. Nature Medicine 18 564571. (doi:10.1038/nm.2687)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Lidell ME, Betz MJ, Dahlqvist Leinhard O, Heglind M, Elander L, Slawik M, Mussack T, Nilsson D, Romu T & Nuutila P et al. 2013 Evidence for two types of brown adipose tissue in humans. Nature Medicine 19 631634. (doi:10.1038/nm.3017)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Liu D, Bordicchia M, Zhang C, Fang H, Wei W, Li JL, Guilherme A, Guntur K, Czech MP & Collins S 2016 Activation of mTORC1 is essential for beta-adrenergic stimulation of adipose browning. Journal of Clinical Investigation 126 17041716. (doi:10.1172/JCI83532)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Liu M, Bai J, He S, Villarreal R, Hu D, Zhang C, Yang X, Liang H, Slaga TJ & Yu Y et al. 2014 Grb10 promotes lipolysis and thermogenesis by phosphorylation-dependent feedback inhibition of mTORC1. Cell Metabolism 19 967980. (doi:10.1016/j.cmet.2014.03.018)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Lockie SH, Heppner KM, Chaudhary N, Chabenne JR, Morgan DA, Veyrat-Durebex C, Ananthakrishnan G, Rohner-Jeanrenaud F, Drucker DJ & DiMarchi R et al. 2012 Direct control of brown adipose tissue thermogenesis by central nervous system glucagon-like peptide-1 receptor signaling. Diabetes 61 27532762. (doi:10.2337/db11-1556)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Lodhi IJ, Yin L, Jensen-Urstad AP, Funai K, Coleman T, Baird JH, El Ramahi MK, Razani B, Song H & Fu-Hsu F et al. 2012 Inhibiting adipose tissue lipogenesis reprograms thermogenesis and PPARgamma activation to decrease diet-induced obesity. Cell Metabolism 16 189201. (doi:10.1016/j.cmet.2012.06.013)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Lopez M, Seoane L, Garcia MC, Lago F, Casanueva FF, Senaris R & Dieguez C 2000 Leptin regulation of prepro-orexin and orexin receptor mRNA levels in the hypothalamus. Biochemical and Biophysical Research Communications 269 4145. (doi:10.1006/bbrc.2000.2245)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Lopez M, Varela L, Vazquez MJ, Rodriguez-Cuenca S, Gonzalez CR, Velagapudi VR, Morgan DA, Schoenmakers E, Agassandian K & Lage R et al. 2010 Hypothalamic AMPK and fatty acid metabolism mediate thyroid regulation of energy balance. Nature Medicine 16 10011008. (doi:10.1038/nm.2207)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Loskutoff DJ & Samad F 1998 The adipocyte and hemostatic balance in obesity: studies of PAI-1. Arteriosclerosis, Thrombosis, and Vascular Biology 18 16. (doi:10.1161/01.ATV.18.1.1)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Lowell BB & Spiegelman BM 2000 Towards a molecular understanding of adaptive thermogenesis. Nature 404 652660.

  • Mao X, Kikani CK, Riojas RA, Langlais P, Wang L, Ramos FJ, Fang Q, Christ-Roberts CY, Hong JY & Kim RY et al. 2006 APPL1 binds to adiponectin receptors and mediates adiponectin signalling and function. Nature Cell Biology 8 516523. (doi:10.1038/ncb1404)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Marcinkiewicz A, Gauthier D, Garcia A & Brasaemle DL 2006 The phosphorylation of serine 492 of perilipin a directs lipid droplet fragmentation and dispersion. Journal of Biological Chemistry 281 1190111909. (doi:10.1074/jbc.M600171200)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Margoni A, Fotis L & Papavassiliou AG 2012 The transforming growth factor-beta/bone morphogenetic protein signalling pathway in adipogenesis. International Journal of Biochemistry and Cell Biology 44 475479. (doi:10.1016/j.biocel.2011.12.014)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Marroqui L, Gonzalez A, Neco P, Caballero-Garrido E, Vieira E, Ripoll C, Nadal A & Quesada I 2012 Role of leptin in the pancreatic beta-cell: effects and signaling pathways. Journal of Molecular Endocrinology 49 R9R17. (doi:10.1530/JME-12-0025)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Masaki T, Chiba S, Yasuda T, Tsubone T, Kakuma T, Shimomura I, Funahashi T, Matsuzawa Y & Yoshimatsu H 2003 Peripheral, but not central, administration of adiponectin reduces visceral adiposity and upregulates the expression of uncoupling protein in agouti yellow (Ay/a) obese mice. Diabetes 52 22662273. (doi:10.2337/diabetes.52.9.2266)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Mattern A, Zellmann T & Beck-Sickinger AG 2014 Processing, signaling, and physiological function of chemerin. IUBMB Life 66 1926. (doi:10.1002/iub.1242)

  • Maury E & Brichard SM 2010 Adipokine dysregulation, adipose tissue inflammation and metabolic syndrome. Molecular and Cellular Endocrinology 314 116. (doi:10.1016/j.mce.2009.07.031)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • McGlashon JM, Gorecki MC, Kozlowski AE, Thirnbeck CK, Markan KR, Leslie KL, Kotas ME, Potthoff MJ, Richerson GB & Gillum MP 2015 Central serotonergic neurons activate and recruit thermogenic brown and beige fat and regulate glucose and lipid homeostasis. Cell Metabolism 21 692705. (doi:10.1016/j.cmet.2015.04.008)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • McTernan PG, McTernan CL, Chetty R, Jenner K, Fisher FM, Lauer MN, Crocker J, Barnett AH & Kumar S 2002 Increased resistin gene and protein expression in human abdominal adipose tissue. Journal of Clinical Endocrinology and Metabolism 87 2407. (doi:10.1210/jcem.87.5.8627)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Meister B 2000 Control of food intake via leptin receptors in the hypothalamus. Vitamins and Hormones 59 265304. (doi:10.1016/s0083-6729(00)59010-4)

  • Milan G, Granzotto M, Scarda A, Calcagno A, Pagano C, Federspil G & Vettor R 2002 Resistin and adiponectin expression in visceral fat of obese rats: effect of weight loss. Obesity Research 10 10951103. (doi:10.1038/oby.2002.149)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Miller RA, Chu Q, Le Lay J, Scherer PE, Ahima RS, Kaestner KH, Foretz M, Viollet B & Birnbaum MJ 2011 Adiponectin suppresses gluconeogenic gene expression in mouse hepatocytes independent of LKB1-AMPK signaling. Journal of Clinical Investigation 121 25182528. (doi:10.1172/JCI45942)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Min SY, Kady J, Nam M, Rojas-Rodriguez R, Berkenwald A, Kim JH, Noh HL, Kim JK, Cooper MP & Fitzgibbons T et al. 2016 Human ‘brite/beige’ adipocytes develop from capillary networks, and their implantation improves metabolic homeostasis in mice. Nature Medicine 22 312318. (doi:10.1038/nm.4031)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Moon HS, Dalamaga M, Kim SY, Polyzos SA, Hamnvik OP, Magkos F, Paruthi J & Mantzoros CS 2013 Leptin’s role in lipodystrophic and nonlipodystrophic insulin-resistant and diabetic individuals. Endocrine Reviews 34 377412. (doi:10.1210/er.2012-1053)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Morton GJ & Schwartz MW 2011 Leptin and the central nervous system control of glucose metabolism. Physiological Reviews 91 389411. (doi:10.1152/physrev.00007.2010)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Moschos S, Chan JL & Mantzoros CS 2002 Leptin and reproduction: a review. Fertility and Sterility 77 433444. (doi:10.1016/S0015-0282(01)03010-2)

  • Mottillo EP, Bloch AE, Leff T & Granneman JG 2012 Lipolytic products activate peroxisome proliferator-activated receptor (PPAR) alpha and delta in brown adipocytes to match fatty acid oxidation with supply. Journal of Biological Chemistry 287 2503825048. (doi:10.1074/jbc.M112.374041)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Murano I, Barbatelli G, Giordano A & Cinti S 2009 Noradrenergic parenchymal nerve fiber branching after cold acclimatisation correlates with brown adipocyte density in mouse adipose organ. Journal of Anatomy 214 171178. (doi:10.1111/j.1469-7580.2008.01001.x)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Nagaev I & Smith U 2001 Insulin resistance and type 2 diabetes are not related to resistin expression in human fat cells or skeletal muscle. Biochemical and Biophysical Research Communications 285 561564. (doi:10.1006/bbrc.2001.5173)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Nawrocki AR, Rajala MW, Tomas E, Pajvani UB, Saha AK, Trumbauer ME, Pang Z, Chen AS, Ruderman NB & Chen H et al. 2006 Mice lacking adiponectin show decreased hepatic insulin sensitivity and reduced responsiveness to peroxisome proliferator-activated receptor gamma agonists. Journal of Biological Chemistry 281 26542660. (doi:10.1074/jbc.M505311200)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Nedergaard J, Bengtsson T & Cannon B 2007 Unexpected evidence for active brown adipose tissue in adult humans. American Journal of Physiology: Endocrinology and Metabolism 293 E444E452. (doi:10.1152/ajpendo.00691.2006)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Nedergaard J & Cannon B 2013 UCP1 mRNA does not produce heat. Biochimica et Biophysica Acta 1831 943949. (doi:10.1016/j.bbalip.2013.01.009)

  • Nguyen KD, Qiu Y, Cui X, Goh YP, Mwangi J, David T, Mukundan L, Brombacher F, Locksley RM & Chawla A 2011 Alternatively activated macrophages produce catecholamines to sustain adaptive thermogenesis. Nature 480 104108. (doi:10.1038/nature10653)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • O’Brien RM & Granner DK 1996 Regulation of gene expression by insulin. Physiological Reviews 76 11091161.

  • Oldfield BJ, Giles ME, Watson A, Anderson C, Colvill LM & McKinley MJ 2002 The neurochemical characterisation of hypothalamic pathways projecting polysynaptically to brown adipose tissue in the rat. Neuroscience 110 515526. (doi:10.1016/S0306-4522(01)00555-3)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Oliver P, Pico C, Serra F & Palou A 2003 Resistin expression in different adipose tissue depots during rat development. Molecular and Cellular Biochemistry 252 397400. (doi:10.1023/A:1025500605884)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Osuga J, Ishibashi S, Oka T, Yagyu H, Tozawa R, Fujimoto A, Shionoiri F, Yahagi N, Kraemer FB & Tsutsumi O et al. 2000 Targeted disruption of hormone-sensitive lipase results in male sterility and adipocyte hypertrophy, but not in obesity. PNAS 97 787792. (doi:10.1073/pnas.97.2.787)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Pajvani UB, Du X, Combs TP, Berg AH, Rajala MW, Schulthess T, Engel J, Brownlee M & Scherer PE 2003 Structure-function studies of the adipocyte-secreted hormone Acrp30/adiponectin. Implications fpr metabolic regulation and bioactivity. Journal of Biological Chemistry 278 90739085. (doi:10.1074/jbc.M207198200)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Pajvani UB, Hawkins M, Combs TP, Rajala MW, Doebber T, Berger JP, Wagner JA, Wu M, Knopps A & Xiang AH et al. 2004 Complex distribution, not absolute amount of adiponectin, correlates with thiazolidinedione-mediated improvement in insulin sensitivity. Journal of Biological Chemistry 279 1215212162. (doi:10.1074/jbc.M311113200)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Parimisetty A, Dorsemans AC, Awada R, Ravanan P, Diotel N & Lefebvre d’Hellencourt C 2016 Secret talk between adipose tissue and central nervous system via secreted factors-an emerging frontier in the neurodegenerative research. Journal of Neuroinflammation 13 67. (doi:10.1186/s12974-016-0530-x)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Park JH, Hur W & Lee SB 2015 Intricate transcriptional networks of classical brown and beige fat cells. Frontiers in Endocrinology 6 124. (doi:10.3389/fendo.2015.00124)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Patel L, Buckels AC, Kinghorn IJ, Murdock PR, Holbrook JD, Plumpton C, Macphee CH & Smith SA 2003 Resistin is expressed in human macrophages and directly regulated by PPAR gamma activators. Biochemical and Biophysical Research Communications 300 472476. (doi:10.1016/S0006-291X(02)02841-3)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Patel SD, Rajala MW, Rossetti L, Scherer PE & Shapiro L 2004 Disulfide-dependent multimeric assembly of resistin family hormones. Science 304 11541158. (doi:10.1126/science.1093466)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Pekkala S, Wiklund PK, Hulmi JJ, Ahtiainen JP, Horttanainen M, Pollanen E, Makela KA, Kainulainen H, Hakkinen K & Nyman K et al. 2013 Are skeletal muscle FNDC5 gene expression and irisin release regulated by exercise and related to health? Journal of Physiology 591 53935400. (doi:10.1113/jphysiol.2013.263707)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Pelleymounter MA, Cullen MJ, Baker MB, Hecht R, Winters D, Boone T & Collins F 1995 Effects of the obese gene product on body weight regulation in ob/ob mice. Science 269 540543. (doi:10.1126/science.7624776)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Perez-Perez A, Sanchez-Jimenez F, Maymo J, Duenas JL, Varone C & Sanchez-Margalet V 2015 Role of leptin in female reproduction. Clinical Chemistry and Laboratory Medicine 53 1528.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Petrovic N, Walden TB, Shabalina IG, Timmons JA, Cannon B & Nedergaard J 2010 Chronic peroxisome proliferator-activated receptor gamma (PPARgamma) activation of epididymally derived white adipocyte cultures reveals a population of thermogenically competent, UCP1-containing adipocytes molecularly distinct from classic brown adipocytes. Journal of Biological Chemistry 285 71537164. (doi:10.1074/jbc.M109.053942)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Pfannenberg C, Werner MK, Ripkens S, Stef I, Deckert A, Schmadl M, Reimold M, Haring HU, Claussen CD & Stefan N 2010 Impact of age on the relationships of brown adipose tissue with sex and adiposity in humans. Diabetes 59 17891793. (doi:10.2337/db10-0004)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Picard F, Naimi N, Richard D & Deshaies Y 1999 Response of adipose tissue lipoprotein lipase to the cephalic phase of insulin secretion. Diabetes 48 452459. (doi:10.2337/diabetes.48.3.452)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Pisani DF, Beranger GE, Corinus A, Giroud M, Ghandour RA, Altirriba J, Chambard JC, Mazure NM, Bendahhou S & Duranton C et al. 2016 The K+ channel TASK1 modulates beta-adrenergic response in brown adipose tissue through the mineralocorticoid receptor pathway. FASEB Journal 30 909922. (doi:10.1096/fj.15-277475)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Qi Y, Takahashi N, Hileman SM, Patel HR, Berg AH, Pajvani UB, Scherer PE & Ahima RS 2004 Adiponectin acts in the brain to decrease body weight. Nature Medicine 10 524529. (doi:10.1038/nm1029)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Raben MS & Hollenberg CH 1960 Effect of glucose and insulin on the esterification of fatty acids by isolated adipose tissue. Journal of Clinical Investigation 39 435439. (doi:10.1172/JCI104055)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Rahmouni K & Morgan DA 2007 Hypothalamic arcuate nucleus mediates the sympathetic and arterial pressure responses to leptin. Hypertension 49 647652. (doi:10.1161/01.HYP.0000254827.59792.b2)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Richard D, Monge-Roffarello B, Chechi K, Labbe SM & Turcotte EE 2012 Control and physiological determinants of sympathetically mediated brown adipose tissue thermogenesis. Frontiers in Endocrinology 3 36. (doi:10.3389/fendo.2012.00036)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Rosen ED, Hsu CH, Wang X, Sakai S, Freeman MW, Gonzalez FJ & Spiegelman BM 2002 C/EBPalpha induces adipogenesis through PPARgamma: a unified pathway. Genes and Development 16 2226. (doi:10.1101/gad.948702)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Rosen ED & MacDougald OA 2006 Adipocyte differentiation from the inside out. Nature Reviews Molecular Cell Biology 7 885896. (doi:10.1038/nrm2066)

  • Rosen ED & Spiegelman BM 2000 Molecular regulation of adipogenesis. Annual Review of Cell and Developmental Biology 16 145171. (doi:10.1146/annurev.cellbio.16.1.145)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Rosen ED & Spiegelman BM 2014 What we talk about when we talk about fat. Cell 156 2044. (doi:10.1016/j.cell.2013.12.012)

  • Rosen ED, Walkey CJ, Puigserver P & Spiegelman BM 2000 Transcriptional regulation of adipogenesis. Genes and Development 14 12931307.

  • Rosenwald M, Perdikari A, Rulicke T & Wolfrum C 2013 Bi-directional interconversion of brite and white adipocytes. Nature Cell Biology 15 659667. (doi:10.1038/ncb2740)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Ruan HB, Dietrich MO, Liu ZW, Zimmer MR, Li MD, Singh JP, Zhang K, Yin R, Wu J & Horvath TL et al. 2014 O-GlcNAc transferase enables AgRP neurons to suppress browning of white fat. Cell 159 306317. (doi:10.1016/j.cell.2014.09.010)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Saddi-Rosa P, Oliveira CS, Giuffrida FM & Reis AF 2010 Visfatin, glucose metabolism and vascular disease: a review of evidence. Diabetology and Metabolic Syndrome 2 21. (doi:10.1186/1758-5996-2-21)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Sahu A 1998 Evidence suggesting that galanin (GAL), melanin-concentrating hormone (MCH), neurotensin (NT), proopiomelanocortin (POMC) and neuropeptide Y (NPY) are targets of leptin signaling in the hypothalamus. Endocrinology 139 795798. (doi:10.1210/endo.139.2.5909)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Sahu A 2003 Leptin signaling in the hypothalamus: emphasis on energy homeostasis and leptin resistance. Frontiers in Neuroendocrinology 24 225253. (doi:10.1016/j.yfrne.2003.10.001)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Saleh J, Al-Wardy N, Farhan H, Al-Khanbashi M & Cianflone K 2011 Acylation stimulating protein: a female lipogenic factor? Obesity Reviews 12 440448. (doi:10.1111/j.1467-789X.2010.00832.x)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Sanchez-Alavez M, Tabarean IV, Osborn O, Mitsukawa K, Schaefer J, Dubins J, Holmberg KH, Klein I, Klaus J & Gomez LF et al. 2010 Insulin causes hyperthermia by direct inhibition of warm-sensitive neurons. Diabetes 59 4350. (doi:10.2337/db09-1128)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Sanchez-Gurmaches J & Guertin DA 2014 Adipocytes arise from multiple lineages that are heterogeneously and dynamically distributed. Nature Communications 5 4099. (doi:10.1038/ncomms5099)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Sanchez-Gurmaches J, Hung CM & Guertin DA 2016 Emerging complexities in adipocyte origins and identity. Trends in Cell Biology 26 313326. (doi:10.1016/j.tcb.2016.01.004)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Sanchez-Gurmaches J, Hung CM, Sparks CA, Tang Y, Li H & Guertin DA 2012 PTEN loss in the Myf5 lineage redistributes body fat and reveals subsets of white adipocytes that arise from Myf5 precursors. Cell Metabolism 16 348362. (doi:10.1016/j.cmet.2012.08.003)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Savage DB & O’Rahilly S 2002 Leptin: a novel therapeutic role in lipodystrophy. Journal of Clinical Investigation 109 12851286. (doi:10.1172/Jbib215326)

  • Savage DB, Sewter CP, Klenk ES, Segal DG, Vidal-Puig A, Considine RV & O’Rahilly S 2001 Resistin/Fizz3 expression in relation to obesity and peroxisome proliferator-activated receptor-gamma action in humans. Diabetes 50 21992202. (doi:10.2337/diabetes.50.10.2199)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Scherer PE 2006 Adipose tissue: from lipid storage compartment to endocrine organ. Diabetes 55 15371545. (doi:10.2337/db06-0263)

  • Scherer PE, Williams S, Fogliano M, Baldini G & Lodish HF 1995 A novel serum protein similar to C1q, produced exclusively in adipocytes. Journal of Biological Chemistry 270 2674626749. (doi:10.1074/jbc.270.45.26746)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Schulz TJ, Huang TL, Tran TT, Zhang H, Townsend KL, Shadrach JL, Cerletti M, McDougall LE, Giorgadze N & Tchkonia T et al. 2011 Identification of inducible brown adipocyte progenitors residing in skeletal muscle and white fat. PNAS 108 143148. (doi:10.1073/pnas.1010929108)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Schwartz MW, Seeley RJ, Campfield LA, Burn P & Baskin DG 1996 Identification of targets of leptin action in rat hypothalamus. Journal of Clinical Investigation 98 11011106. (doi:10.1172/JCI118891)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Seale P, Bjork B, Yang W, Kajimura S, Chin S, Kuang S, Scime A, Devarakonda S, Conroe HM & Erdjument-Bromage H et al. 2008 PRDM16 controls a brown fat/skeletal muscle switch. Nature 454 961967. (doi:10.1038/nature07182)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Seale P, Conroe HM, Estall J, Kajimura S, Frontini A, Ishibashi J, Cohen P, Cinti S & Spiegelman BM 2011 Prdm16 determines the thermogenic program of subcutaneous white adipose tissue in mice. Journal of Clinical Investigation 121 96105. (doi:10.1172/JCI44271)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Seale P, Kajimura S, Yang W, Chin S, Rohas LM, Uldry M, Tavernier G, Langin D & Spiegelman BM 2007 Transcriptional control of brown fat determination by PRDM16. Cell Metabolism 6 3854. (doi:10.1016/j.cmet.2007.06.001)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Sethi JK & Vidal-Puig AJ 2007 Thematic review series: adipocyte biology. Adipose tissue function and plasticity orchestrate nutritional adaptation. Journal of Lipid Research 48 12531262. (doi:10.1194/jlr.R700005-JLR200)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Sharp LZ, Shinoda K, Ohno H, Scheel DW, Tomoda E, Ruiz L, Hu H, Wang L, Pavlova Z & Gilsanz V et al. 2012 Human BAT possesses molecular signatures that resemble beige/brite cells. PLoS ONE 7 e49452. (doi:10.1371/journal.pone.0049452)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Shi YC, Lau J, Lin Z, Zhang H, Zhai L, Sperk G, Heilbronn R, Mietzsch M, Weger S & Huang XF et al. 2013 Arcuate NPY controls sympathetic output and BAT function via a relay of tyrosine hydroxylase neurons in the PVN. Cell Metabolism 17 236248. (doi:10.1016/j.cmet.2013.01.006)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Shimizu I, Hirota M, Ohboshi C & Shima K 1987 Identification and localization of glucagon-like peptide-1 and its receptor in rat brain. Endocrinology 121 10761082. (doi:10.1210/endo-121-3-1076)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Smith SJ, Cases S, Jensen DR, Chen HC, Sande E, Tow B, Sanan DA, Raber J, Eckel RH & Farese RV Jr 2000 Obesity resistance and multiple mechanisms of triglyceride synthesis in mice lacking Dgat. Nature Genetics 25 8790. (doi:10.1038/75651)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Sobhani I, Bado A, Vissuzaine C, Buyse M, Kermorgant S, Laigneau JP, Attoub S, Lehy T, Henin D & Mignon M et al. 2000 Leptin secretion and leptin receptor in the human stomach. Gut 47 178183. (doi:10.1136/gut.47.2.178)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Stanford KI, Middelbeek RJ, Townsend KL, An D, Nygaard EB, Hitchcox KM, Markan KR, Nakano K, Hirshman MF & Tseng YH et al. 2013 Brown adipose tissue regulates glucose homeostasis and insulin sensitivity. Journal of Clinical Investigation 123 215223. (doi:10.1172/JCI62308)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Steppan CM, Bailey ST, Bhat S, Brown EJ, Banerjee RR, Wright CM, Patel HR, Ahima RS & Lazar MA 2001a The hormone resistin links obesity to diabetes. Nature 409 307312. (doi:10.1038/35053000)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Steppan CM, Brown EJ, Wright CM, Bhat S, Banerjee RR, Dai CY, Enders GH, Silberg DG, Wen X & Wu GD et al. 2001b A family of tissue-specific resistin-like molecules. PNAS 98 502506. (doi:10.1073/pnas.98.2.502)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Sukonina V, Lookene A, Olivecrona T & Olivecrona G 2006 Angiopoietin-like protein 4 converts lipoprotein lipase to inactive monomers and modulates lipase activity in adipose tissue. PNAS 103 1745017455. (doi:10.1073/pnas.0604026103)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Sun K, Kusminski CM, Luby-Phelps K, Spurgin SB, An YA, Wang QA, Holland WL & Scherer PE 2014 Brown adipose tissue derived VEGF-A modulates cold tolerance and energy expenditure. Molecular Metabolism 3 474483. (doi:10.1016/j.molmet.2014.03.010)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Svensson KJ, Long JZ, Jedrychowski MP, Cohen P, Lo JC, Serag S, Kir S, Shinoda K, Tartaglia JA & Rao RR et al. 2016 A secreted Slit2 fragment regulates adipose tissue thermogenesis and metabolic function. Cell Metabolism 23 454466. (doi:10.1016/j.cmet.2016.01.008)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Swierczynski J, Goyke E, Wach L, Pankiewicz A, Kochan Z, Adamonis W, Sledzinski Z & Aleksandrowicz Z 2000 Comparative study of the lipogenic potential of human and rat adipose tissue. Metabolism 49 594599. (doi:10.1016/S0026-0495(00)80033-5)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Tamori Y, Masugi J, Nishino N & Kasuga M 2002 Role of peroxisome proliferator-activated receptor-gamma in maintenance of the characteristics of mature 3T3-L1 adipocytes. Diabetes 51 20452055. (doi:10.2337/diabetes.51.7.2045)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Tan CY & Vidal-Puig A 2008 Adipose tissue expandability: the metabolic problems of obesity may arise from the inability to become more obese. Biochemical Society Transactions 36 935940. (doi:10.1042/BSbib360935)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Tanaka T, Yoshida N, Kishimoto T & Akira S 1997 Defective adipocyte differentiation in mice lacking the C/EBPbeta and/or C/EBPdelta gene. EMBO Journal 16 74327443. (doi:10.1093/emboj/16.24.7432)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Tang QQ, Zhang JW & Daniel Lane M 2004 Sequential gene promoter interactions by C/EBPbeta, C/EBPalpha, and PPARgamma during adipogenesis. Biochemical and Biophysical Research Communications 318 213218. (doi:10.1016/j.bbrc.2004.04.017)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Taygerly JP, McGee LR, Rubenstein SM, Houze JB, Cushing TD, Li Y, Motani A, Chen JL, Frankmoelle W & Ye G et al. 2013 Discovery of INT131: a selective PPARgamma modulator that enhances insulin sensitivity. Bioorganic and Medicinal Chemistry 21 979992. (doi:10.1016/j.bmc.2012.11.058)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Teglund S, McKay C, Schuetz E, van Deursen JM, Stravopodis D, Wang D, Brown M, Bodner S, Grosveld G & Ihle JN 1998 Stat5a and Stat5b proteins have essential and nonessential, or redundant, roles in cytokine responses. Cell 93 841850. (doi:10.1016/S0092-8674(00)81444-0)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Thomas C, Gioiello A, Noriega L, Strehle A, Oury J, Rizzo G, Macchiarulo A, Yamamoto H, Mataki C & Pruzanski M et al. 2009 TGR5-mediated bile acid sensing controls glucose homeostasis. Cell Metabolism 10 167177. (doi:10.1016/j.cmet.2009.08.001)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Thorne A, Lonnqvist F, Apelman J, Hellers G & Arner P 2002 A pilot study of long-term effects of a novel obesity treatment: omentectomy in connection with adjustable gastric banding. International Journal of Obesity and Related Metabolic Disorders 26 193199. (doi:10.1038/sj.ijo.0801871)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Timmons JA, Baar K, Davidsen PK & Atherton PJ 2012 Is irisin a human exercise gene? Nature 488 E9E10; discussion E10E11. (doi:10.1038/nature11364)

  • Tomas E, Tsao TS, Saha AK, Murrey HE, Zhang Cc C, Itani SI, Lodish HF & Ruderman NB 2002 Enhanced muscle fat oxidation and glucose transport by ACRP30 globular domain: acetyl-CoA carboxylase inhibition and AMP-activated protein kinase activation. PNAS 99 1630916313. (doi:10.1073/pnas.222657499)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Tontonoz P, Hu E & Spiegelman BM 1994 Stimulation of adipogenesis in fibroblasts by PPAR gamma 2, a lipid-activated transcription factor. Cell 79 11471156. (doi:10.1016/0092-8674(94)90006-X)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Tran TT, Yamamoto Y, Gesta S & Kahn CR 2008 Beneficial effects of subcutaneous fat transplantation on metabolism. Cell Metabolism 7 410420. (doi:10.1016/j.cmet.2008.04.004)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Trayhurn P, Duncan JS, Hoggard N & Rayner DV 1998 Regulation of leptin production: a dominant role for the sympathetic nervous system? Proceedings of the Nutrition Society 57 413419. (doi:10.1079/PNS19980060)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Trayhurn P, Thurlby PL & James WP 1977 Thermogenic defect in pre-obese ob/ob mice. Nature 266 6062. (doi:10.1038/266060a0)

  • Tsao TS, Murrey HE, Hug C, Lee DH & Lodish HF 2002 Oligomerization state-dependent activation of NF-kappa B signaling pathway by adipocyte complement-related protein of 30 kDa (Acrp30). Journal of Biological Chemistry 277 2935929362. (doi:10.1074/jbc.C200312200)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Tseng YH, Kokkotou E, Schulz TJ, Huang TL, Winnay JN, Taniguchi CM, Tran TT, Suzuki R, Espinoza DO & Yamamoto Y et al. 2008 New role of bone morphogenetic protein 7 in brown adipogenesis and energy expenditure. Nature 454 10001004. (doi:10.1038/nature07221)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Ueta CB, Fernandes GW, Capelo LP, Fonseca TL, Maculan FD, Gouveia CH, Brum PC, Christoffolete MA, Aoki MS & Lancellotti CL et al. 2012 beta(1) Adrenergic receptor is key to cold- and diet-induced thermogenesis in mice. Journal of Endocrinology 214 359365. (doi:10.1530/JOE-12-0155)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Ukropec J, Anunciado RV, Ravussin Y & Kozak LP 2006 Leptin is required for uncoupling protein-1-independent thermogenesis during cold stress. Endocrinology 147 24682480. (doi:10.1210/en.2005-1216)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Uldry M, Yang W, St-Pierre J, Lin J, Seale P & Spiegelman BM 2006 Complementary action of the PGC-1 coactivators in mitochondrial biogenesis and brown fat differentiation. Cell Metabolism 3 333341. (doi:10.1016/j.cmet.2006.04.002)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • van der Lans AA, Hoeks J, Brans B, Vijgen GH, Visser MG, Vosselman MJ, Hansen J, Jorgensen JA, Wu J & Mottaghy FM et al. 2013 Cold acclimation recruits human brown fat and increases nonshivering thermogenesis. Journal of Clinical Investigation 123 33953403. (doi:10.1172/JCI68993)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • van Marken Lichtenbelt WD, Vanhommerig JW, Smulders NM, Drossaerts JM, Kemerink GJ, Bouvy ND, Schrauwen P & Teule GJ 2009 Cold-activated brown adipose tissue in healthy men. New England Journal of Medicine 360 15001508. (doi:10.1056/NEJMoa0808718)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Veniant MM, Hale C, Helmering J, Chen MM, Stanislaus S, Busby J, Vonderfecht S, Xu J & Lloyd DJ 2012 FGF21 promotes metabolic homeostasis via white adipose and leptin in mice. PLoS ONE 7 e40164. (doi:10.1371/journal.pone.0040164)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Veniant MM, Sivits G, Helmering J, Komorowski R, Lee J, Fan W, Moyer C & Lloyd DJ 2015 Pharmacologic effects of FGF21 are independent of the ‘browning’ of white adipose tissue. Cell Metabolism 21 731738. (doi:10.1016/j.cmet.2015.04.019)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Verma S, Li SH, Wang CH, Fedak PW, Li RK, Weisel RD & Mickle DA 2003 Resistin promotes endothelial cell activation: further evidence of adipokine-endothelial interaction. Circulation 108 736740. (doi:10.1161/01.CIR.0000084503.91330.49)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Virtanen KA, Lidell ME, Orava J, Heglind M, Westergren R, Niemi T, Taittonen M, Laine J, Savisto NJ & Enerback S et al. 2009 Functional brown adipose tissue in healthy adults. New England Journal of Medicine 360 15181525. (doi:10.1056/NEJMoa0808949)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Vishvanath L, MacPherson KA, Hepler C, Wang QA, Shao M, Spurgin SB, Wang MY, Kusminski CM, Morley TS & Gupta RK 2016 Pdgfrbeta(+) mural preadipocytes contribute to adipocyte hyperplasia induced by high-fat-diet feeding and prolonged cold exposure in adult mice. Cell Metabolism 23 350359. (doi:10.1016/j.cmet.2015.10.018)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Waki H, Yamauchi T, Kamon J, Ito Y, Uchida S, Kita S, Hara K, Hada Y, Vasseur F & Froguel P et al. 2003 Impaired multimerization of human adiponectin mutants associated with diabetes. Molecular structure and multimer formation of adiponectin. Journal of Biological Chemistry 278 4035240363. (doi:10.1074/jbc.M300365200)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Wang C, Bomberg E, Billington C, Levine A & Kotz CM 2007 Brain-derived neurotrophic factor in the hypothalamic paraventricular nucleus increases energy expenditure by elevating metabolic rate. American Journal of Physiology: Regulatory, Integrative and Comparative Physiology 293 R992R1002. (doi:10.1152/ajpregu.00516.2006)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Wang C, Bomberg E, Billington CJ, Levine AS & Kotz CM 2010 Brain-derived neurotrophic factor (BDNF) in the hypothalamic ventromedial nucleus increases energy expenditure. Brain Research 1336 6677. (doi:10.1016/j.brainres.2010.04.013)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Wang J, Liu R, Hawkins M, Barzilai N & Rossetti L 1998 A nutrient-sensing pathway regulates leptin gene expression in muscle and fat. Nature 393 684688. (doi:10.1038/31474)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Wang ND, Finegold MJ, Bradley A, Ou CN, Abdelsayed SV, Wilde MD, Taylor LR, Wilson DR & Darlington GJ 1995 Impaired energy homeostasis in C/EBP alpha knockout mice. Science 269 11081112. (doi:10.1126/science.7652557)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Wang QA, Tao C, Gupta RK & Scherer PE 2013 Tracking adipogenesis during white adipose tissue development, expansion and regeneration. Nature Medicine 19 13381344. (doi:10.1038/nm.3324)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Wang W, Kissig M, Rajakumari S, Huang L, Lim HW, Won KJ & Seale P 2014 Ebf2 is a selective marker of brown and beige adipogenic precursor cells. PNAS 111 1446614471. (doi:10.1073/pnas.1412685111)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Wang Y, Kim KA, Kim JH & Sul HS 2006 Pref-1, a preadipocyte secreted factor that inhibits adipogenesis. Journal of Nutrition 136 29532956.

  • Wang Y, Lam KS, Xu JY, Lu G, Xu LY, Cooper GJ & Xu A 2005 Adiponectin inhibits cell proliferation by interacting with several growth factors in an oligomerization-dependent manner. Journal of Biological Chemistry 280 1834118347. (doi:10.1074/jbc.M501149200)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Watanabe M, Houten SM, Mataki C, Christoffolete MA, Kim BW, Sato H, Messaddeq N, Harney JW, Ezaki O & Kodama T et al. 2006 Bile acids induce energy expenditure by promoting intracellular thyroid hormone activation. Nature 439 484489. (doi:10.1038/nature04330)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Weisberg SP, McCann D, Desai M, Rosenbaum M, Leibel RL & Ferrante AW Jr 2003 Obesity is associated with macrophage accumulation in adipose tissue. Journal of Clinical Investigation 112 17961808. (doi:10.1172/JCI200319246)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Westerterp-Plantenga MS, Saris WH, Hukshorn CJ & Campfield LA 2001 Effects of weekly administration of pegylated recombinant human OB protein on appetite profile and energy metabolism in obese men. American Journal of Clinical Nutrition 74 426434.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Whittle AJ, Carobbio S, Martins L, Slawik M, Hondares E, Vazquez MJ, Morgan D, Csikasz RI, Gallego R & Rodriguez-Cuenca S et al. 2012 BMP8B increases brown adipose tissue thermogenesis through both central and peripheral actions. Cell 149 871885. (doi:10.1016/j.cell.2012.02.066)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Wu AL, Kolumam G, Stawicki S, Chen Y, Li J, Zavala-Solorio J, Phamluong K, Feng B, Li L & Marsters S et al. 2011 Amelioration of type 2 diabetes by antibody-mediated activation of fibroblast growth factor receptor 1. Science Translational Medicine 3 113ra126. (doi:10.1126/scitranslmed.3002669)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Wu J, Bostrom P, Sparks LM, Ye L, Choi JH, Giang AH, Khandekar M, Virtanen KA, Nuutila P & Schaart G et al. 2012 Beige adipocytes are a distinct type of thermogenic fat cell in mouse and human. Cell 150 366376. (doi:10.1016/j.cell.2012.05.016)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Wu L, Zhou L, Chen C, Gong J, Xu L, Ye J, Li D & Li P 2014 Cidea controls lipid droplet fusion and lipid storage in brown and white adipose tissue. Science China Life Sciences 57 107116. (doi:10.1007/s11427-013-4585-y)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Wu Z, Rosen ED, Brun R, Hauser S, Adelmant G, Troy AE, McKeon C, Darlington GJ & Spiegelman BM 1999 Cross-regulation of C/EBP alpha and PPAR gamma controls the transcriptional pathway of adipogenesis and insulin sensitivity. Molecular Cell 3 151158. (doi:10.1016/S1097-2765(00)80306-8)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Xin X, Zhou L, Reyes CM, Liu F & Dong LQ 2011 APPL1 mediates adiponectin-stimulated p38 MAPK activation by scaffolding the TAK1-MKK3-p38 MAPK pathway. American Journal of Physiology: Endocrinology and Metabolism 300 E103E110. (doi:10.1152/ajpendo.00427.2010)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Xue B, Coulter A, Rim JS, Koza RA & Kozak LP 2005 Transcriptional synergy and the regulation of Ucp1 during brown adipocyte induction in white fat depots. Molecular and Cellular Biology 25 83118322. (doi:10.1128/MCB.25.18.8311-8322.2005)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Xue B, Rim JS, Hogan JC, Coulter AA, Koza RA & Kozak LP 2007 Genetic variability affects the development of brown adipocytes in white fat but not in interscapular brown fat. Journal of Lipid Research 48 4151. (doi:10.1194/jlr.M600287-JLR200)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Yamauchi T, Hara K, Kubota N, Terauchi Y, Tobe K, Froguel P, Nagai R & Kadowaki T 2003 Dual roles of adiponectin/Acrp30 in vivo as an anti-diabetic and anti-atherogenic adipokine. Current Drug Targets: Immune, Endocrine and Metabolic Disorders 3 243254. (doi:10.2174/1568008033340090)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Yamauchi T, Kamon J, Minokoshi Y, Ito Y, Waki H, Uchida S, Yamashita S, Noda M, Kita S & Ueki K et al. 2002 Adiponectin stimulates glucose utilization and fatty-acid oxidation by activating AMP-activated protein kinase. Nature Medicine 8 12881295. (doi:10.1038/nm788)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Yamauchi T, Nio Y, Maki T, Kobayashi M, Takazawa T, Iwabu M, Okada-Iwabu M, Kawamoto S, Kubota N & Kubota T et al. 2007 Targeted disruption of AdipoR1 and AdipoR2 causes abrogation of adiponectin binding and metabolic actions. Nature Medicine 13 332339. (doi:10.1038/nm1557)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Yasruel Z, Cianflone K, Sniderman AD, Rosenbloom M, Walsh M & Rodriguez MA 1991 Effect of acylation stimulating protein on the triacylglycerol synthetic pathway of human adipose tissue. Lipids 26 495499. (doi:10.1007/BF02536592)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Yasuda T, Masaki T, Kakuma T & Yoshimatsu H 2004 Hypothalamic melanocortin system regulates sympathetic nerve activity in brown adipose tissue. Experimental Biology and Medicine 229 235239.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Ye L, Wu J, Cohen P, Kazak L, Khandekar MJ, Jedrychowski MP, Zeng X, Gygi SP & Spiegelman BM 2013 Fat cells directly sense temperature to activate thermogenesis. PNAS 110 1248012485. (doi:10.1073/pnas.1310261110)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Yin D, Clarke SD, Peters JL & Etherton TD 1998 Somatotropin-dependent decrease in fatty acid synthase mRNA abundance in 3T3-F442A adipocytes is the result of a decrease in both gene transcription and mRNA stability. Biochemical Journal 331 815820. (doi:10.1042/bj3310815)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Yoneshiro T, Aita S, Matsushita M, Kayahara T, Kameya T, Kawai Y, Iwanaga T & Saito M 2013 Recruited brown adipose tissue as an antiobesity agent in humans. Journal of Clinical Investigation 123 34043408. (doi:10.1172/JCI67803)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Young P, Arch JR & Ashwell M 1984 Brown adipose tissue in the parametrial fat pad of the mouse. FEBS Letters 167 1014. (doi:10.1016/0014-5793(84)80822-4)

  • Zechner R, Strauss JG, Haemmerle G, Lass A & Zimmermann R 2005 Lipolysis: pathway under construction. Current Opinion in Lipidology 16 333340. (doi:10.1097/01.mol.0000169354.20395.1c)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Zhang JW, Klemm DJ, Vinson C & Lane MD 2004 Role of CREB in transcriptional regulation of CCAAT/enhancer-binding protein beta gene during adipogenesis. Journal of Biological Chemistry 279 44714478. (doi:10.1074/jbc.M311327200)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Zhang X, Yeung DC, Karpisek M, Stejskal D, Zhou ZG, Liu F, Wong RL, Chow WS, Tso AW & Lam KS et al. 2008 Serum FGF21 levels are increased in obesity and are independently associated with the metabolic syndrome in humans. Diabetes 57 12461253. (doi:10.2337/db07-1476)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Zhang Y, Proenca R, Maffei M, Barone M, Leopold L & Friedman JM 1994 Positional cloning of the mouse obese gene and its human homologue. Nature 372 425432. (doi:10.1038/372425a0)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Zhou L, Deepa SS, Etzler JC, Ryu J, Mao X, Fang Q, Liu DD, Torres JM, Jia W & Lechleiter JD et al. 2009 Adiponectin activates AMP-activated protein kinase in muscle cells via APPL1/LKB1-dependent and phospholipase C/Ca2+/Ca2+/calmodulin-dependent protein kinase kinase-dependent pathways. Journal of Biological Chemistry 284 2242622435. (doi:10.1074/jbc.M109.028357)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Zimmermann R, Strauss JG, Haemmerle G, Schoiswohl G, Birner-Gruenberger R, Riederer M, Lass A, Neuberger G, Eisenhaber F & Hermetter A et al. 2004 Fat mobilization in adipose tissue is promoted by adipose triglyceride lipase. Science 306 13831386. (doi:10.1126/science.1100747)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Zingaretti MC, Crosta F, Vitali A, Guerrieri M, Frontini A, Cannon B, Nedergaard J & Cinti S 2009 The presence of UCP1 demonstrates that metabolically active adipose tissue in the neck of adult humans truly represents brown adipose tissue. FASEB Journal 23 31133120. (doi:10.1096/fj.09-133546)

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Zuo Y, Qiang L & Farmer SR 2006 Activation of CCAAT/enhancer-binding protein (C/EBP) alpha expression by C/EBP beta during adipogenesis requires a peroxisome proliferator-activated receptor-gamma-associated repression of HDAC1 at the C/ebp alpha gene promoter. Journal of Biological Chemistry 281 79607967. (doi:10.1074/jbc.M510682200)

    • PubMed
    • Search Google Scholar
    • Export Citation
-