Skip to main content

Advertisement

Log in

The NLR network and the immunological disease continuum of adaptive and innate immune-mediated inflammation against self

  • Review
  • Published:
Seminars in Immunopathology Aims and scope Submit manuscript

Abstract

The nucleotide-binding domain, leucine-rich repeat containing family (NLR) network has provided pivotal genetic and molecular insights into diseases that were hitherto regarded as autoimmune. The NLR-related disorders include rare monogenic autoinflammatory diseases collectively termed cryopyrin-associated periodic syndromes, Crohn’s disease which is a common polygenic disease and also an association at the mechanistic level with gout and pseudogout. Unlike the classical autoimmune diseases where disease immunopathogenesis is played out primarily in the primary and secondary lymphoid organs, the immunopathogenesis of the NLR-related disorders is played out in the tissues where inflammation arises. As the genetic mutations or molecular cascades associated with the NLR-related disorders have a widespread cellular distribution, it has been somewhat enigmatic why these disorders attack certain territories, but not others. This implies that tissue-specific factors in the target organs themselves contribute to disease expression. Such examples include the high abundance of NOD2 expressing cells in the part of the gut most typically afflicted by Crohn’s disease and the preferential deposition of crystals in the joints to where inflammation localises in gout and pseudogout. The NLR network is associated principally with increases in TNF or IL-1 production, both of which are key players in innate immunity. Therefore, the NLR network identifies at the genetic and molecular level a robust paradigm for innate immune activation against self. This tissue-specific-factor-associated inflammation is the diametric opposite of classical autoimmunity. Of note, the MHC class-I-associated diseases including psoriasis (HLA-Cw6) and ankylosing spondylitis (HLA-B27) show striking clinical overlaps with Crohn’s disease and also some rare monogenic diseases. Thus, the NLR innate immune pathway allows the full spectrum of inflammation against self to be viewed along an immunological disease continuum with autoantibody-associated disease at one end, innate immune diseases at the other and MHC class-1-related disorders as an intermediate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Gordon S (2002) Pattern recognition receptors: doubling up for the innate immune response. Cell 111(7):927–930

    Article  PubMed  CAS  Google Scholar 

  2. Akira S, Uematsu S, Takeuchi O (2006) Pathogen recognition and innate immunity. Cell 124(4):783–801

    Article  PubMed  CAS  Google Scholar 

  3. McGonagle D, McDermott MF (2006) A proposed classification of the immunological diseases. PLoS Med 3(8):e297

    Article  PubMed  CAS  Google Scholar 

  4. Fritz JH, Ferrero RL, Philpott DJ, Girardin SE (2006) Nod-like proteins in immunity, inflammation and disease. Nat Immunol 7(12):1250–1257

    Article  PubMed  CAS  Google Scholar 

  5. Jin Y, Mailloux CM, Gowan K, Riccardi SL, LaBerge G, Bennett DC, Fain PR, Spritz RA (2007) NALP1 in vitiligo-associated multiple autoimmune disease. N Engl J Med. 356(12):1216–1225

    Article  PubMed  CAS  Google Scholar 

  6. Aganna E, Martinon F, Hawkins PN et al (2002) Association of mutations in the NALP3/CIAS1/ PYPAF1 gene with a broad phenotype including recurrent fever, cold sensitivity, sensorineural deafness, and AA amyloidosis. Arthritis Rheum 46:2445

    Article  PubMed  CAS  Google Scholar 

  7. Agostini L, Martinon F, Burns K et al (2004) NALP3 forms an IL-l beta-processing inflammasome with increased activity in Muckle–Wells autoinflammatory disorder. Immunity 20:319

    Article  PubMed  CAS  Google Scholar 

  8. Church LD, Churchman SM, Hawkins PH, McDermott MF (2006) Hereditary auto-inflammatory disorders and biologics. Springer Semin Immunopathol 27(4):494–508

    Article  PubMed  CAS  Google Scholar 

  9. Aksentijevich I, Centola M, Deng ZM et al (1997) Ancient missense mutations in a new member of the RoRet gene family are likely to cause familial Mediterranean fever. Cell 90:797

    Article  Google Scholar 

  10. Bernot A, Clepet C, Dasilva C et al (1997) A candidate gene for familial Mediterranean fever. Nat Genet 17:25

    Article  Google Scholar 

  11. Centola M, Wood G, Frucht DM, Galon J, Aringer M, Farrell C, Kingma DW, Horwitz ME, Mansfield E, Holland SM, O’Shea JJ, Rosenberg HF, Malech HL, Kastner DL (2000) The gene for familial Mediterranean fever, MEFV, is expressed in early leukocyte development and is regulated in response to inflammatory mediators. Blood 95(10):3223–3231

    PubMed  CAS  Google Scholar 

  12. Dowds TA, Masumoto J, Chen FF, Ogura Y, Inohara N, Nunez G (2003) Regulation of cryopyrin/Pypaf1 signaling by pyrin, the familial Mediterranean fever gene product. Biochem Biophys Res Commun 302:575–580

    Article  PubMed  CAS  Google Scholar 

  13. Gumucio DL, Diaz A, Schaner P et al (2002) Fire and ICE: the role of pyrin domain-containing proteins in inflammation and apoptosis. Clin Exp Rheumatol 20:S45

    PubMed  CAS  Google Scholar 

  14. Stojanov S, Kastner DL (2005) Familial autoinflammatory diseases: genetics, pathogenesis and treatment. Curr Opin Rheumatol 17:586

    Article  PubMed  CAS  Google Scholar 

  15. Wise CA, Gillum JD, Seidman CE, Lindor NM, Veile R, Bashiardes S, Lovett M (2002) Mutations in CD2BP1 disrupt binding to PTP PEST and are responsible for PAPA syndrome, an autoinflammatory disorder. Hum Mol Genet 11:961–969

    Article  PubMed  CAS  Google Scholar 

  16. Shoham NG, Centola M, Mansfield E, Hull KM, Wood G, Wise CA, Kastner DL (2003) Pyrin binds the PSTPIP1/CD2BP1 protein, defining familial Mediterranean fever and PAPA syndrome as disorders in the same pathway. Proc Natl Acad Sci USA 100(23):13501–13506

    Article  PubMed  CAS  Google Scholar 

  17. McDermott MF (2004) A common pathway in periodic fever syndromes. Trends Immunol 25(9):457–460

    Article  PubMed  CAS  Google Scholar 

  18. Pastores GM, Michels VV, Stickler GB, Su WP, Nelson AM, Bovenmyer DA (1990) Autosomal dominant granulomatous arthritis, uveitis, skin rash, and synovial cysts. J Pediatr 117(3):403–408

    Article  PubMed  CAS  Google Scholar 

  19. Miceli-Richard C, Lesage S, Rybojad M, Prieur AM, Manouvrier-Hanu S, Hafner R, Chamaillard M, Zouali H, Thomas G, Hugot JP (2001) CARD15 mutations in Blau syndrome. Nat Genet 29(1):19–20

    Article  PubMed  CAS  Google Scholar 

  20. Kanazawa N, Okafuji I, Kambe N, Nishikomori R, Nakata-Hizume M, Nagai S, Fuji A, Yuasa T, Manki A, Sakurai Y, Nakajima M, Kobayashi H, Fujiwara I, Tsutsumi H, Utani A, Nishigori C, Heike T, Nakahata T, Miyachi Y (2005) Early-onset sarcoidosis and CARD15 mutations with constitutive nuclear factor-kappaB activation: common genetic etiology with Blau syndrome. Blood 105(3):1195–1197

    Article  PubMed  CAS  Google Scholar 

  21. Ogura Y, Bonen DK, Inohara N, Nicolae DL, Chen FF, Ramos R, Britton H, Moran T, Karaliuskas R, Duerr RH, Achkar JP, Brant SR, Bayless TM, Kirschner BS, Hanauer SB, Nunez G, Cho JH (2001) A frameshift mutation in NOD2 associated with susceptibility to Crohn’s disease. Nature 411(6837):603–606

    Article  PubMed  CAS  Google Scholar 

  22. Wehkamp J, Stange EF (2005) NOD2 mutation and mice: no Crohn’s disease but many lessons to learn. Trends Mol Med 11(7):307–309

    Article  PubMed  CAS  Google Scholar 

  23. Lala S, Ogura Y, Osborne C, Hor SY, Bromfield A, Davies S, Ogunbiyi O, Nunez G, Keshav S (2003) Crohn’s disease and the NOD2 gene: a role for Paneth cells. Gastroenterology 125:47–57

    Article  PubMed  CAS  Google Scholar 

  24. Seiderer J, Schnitzler F, Brand S, Staudinger T, Pfennig S, Herrmann K, Hofbauer K, Dambacher J, Tillack C, Sackmann M, Goke B, Lohse P, Ochsenkuhn T (2006) Homozygosity for the CARD15 frameshift mutation 1007fs is predictive of early onset of Crohn’s disease with ileal stenosis, entero-enteral fistulas, and frequent need for surgical intervention with high risk of re-stenosis. Scand J Gastroenterol 41:1421–1432

    Article  PubMed  CAS  Google Scholar 

  25. Voss E, Wehkamp J, Wehkamp K, Stange EF, Schroder JM, Harder J (2006) NOD2/CARD15 mediates induction of the antimicrobial peptide human beta-defensin-2. J Biol Chem 281:2005–2011

    Article  PubMed  CAS  Google Scholar 

  26. Wehkamp J, Harder J, Weichenthal M, Schwab M, Schaffeler E, Schlee M, Herrlinger KR, Stallmach A, Noack F, Fritz P, Schroder JM, Bevins CL, Fellermann K, Stange EF (2004) NOD2 (CARD15) mutations in Crohn’s disease are associated with diminished mucosal alpha-defensin expression. Gut 53(11):1658–1664

    Article  PubMed  CAS  Google Scholar 

  27. Hisamatsu T, Suzuki M, Reinecker HC, Nadeau WJ, McCormick BA, Podolsky DK (2003) CARD15/NOD2 functions as an antibacterial factor in human intestinal epithelial cells. Gastroenterology 124(4):993–1000

    Article  PubMed  CAS  Google Scholar 

  28. (2007) Is Crohn’s disease due to defective immunity? Gut J 56(1):2–5

  29. Folwaczny C, Glas J, Torok HP (2003) Crohn’s disease: an immunodeficiency? Eur J Gastroenterol Hepatol 15(6):621–626

    Article  PubMed  Google Scholar 

  30. Huang JS, Noack D, Rae J, Ellis BA, Newbury R, Pong AL, Lavine JE, Curnutte JT, Bastian J (2004) Chronic granulomatous disease caused by a deficiency in p47(phox) mimicking Crohn’s disease. Clin Gastroenterol Hepatol 2(8):690–695

    Article  PubMed  CAS  Google Scholar 

  31. Parkes M, Barrett JC, Prescott NJ et al (2007) Sequence variants in the autophagy gene IRGM and multiple other replicating loci contribute to Crohn’s disease susceptibility. Nat Genet 39(7):830–832 (Jun 6)

    Article  PubMed  CAS  Google Scholar 

  32. Maeda S, Hsu LC, Liu H, Bankston LA, Iimura M, Kagnoff MF, Eckmann L, Karin M (2005) Nod2 mutation in Crohn’s disease potentiates NF-kappaB activity and IL-1beta processing. Science 307(5710):734–738

    Article  PubMed  CAS  Google Scholar 

  33. Nos P, Bastida G, Beltran B, Aguas M, Ponce J (2006) Crohn’s disease in common variable immunodeficiency: treatment with antitumor necrosis factor alpha. [Case Reports. Letter] Am J Gastroenterol 101(9):2165–2166

    Article  PubMed  Google Scholar 

  34. Martinon F, Petrilli V, Mayor A, Tardivel A, Tschopp J (2006) Gout-associated uric acid crystals activate the NALP3 inflammasome. Nature 440(7081):237–241

    Article  PubMed  CAS  Google Scholar 

  35. Chen CJ, Shi Y, Hearn A, Fitzgerald K, Golenbock D, Reed G, Akira S, Rock KL (2006) MyD88-dependent IL-1 receptor signaling is essential for gouty inflammation stimulated by monosodium urate crystals. J Clin Invest 116(8):2262–2271

    Article  PubMed  CAS  Google Scholar 

  36. Akahoshi T, Murakami Y, Kitasato H (2007) Recent advances in crystal-induced acute inflammation. Curr Opin Rheumatol 19(2):146–150

    Article  PubMed  CAS  Google Scholar 

  37. McGonagle D, Tan AT, Shankaranarayana S, Madden J, Emery P, McDermott MF (2007) Management of treatment-resistant inflammation of acute-on-chronic tophaceous gout with anakinra Ann Rheum Dis (in press)

  38. So A, De Smedt T, Revaz S, Tschopp J (2007) A pilot study of IL-1 inhibition by anakinra in acute gout. Arthritis Res Ther 12 9(2):R28

    Article  CAS  Google Scholar 

  39. Watanabe T, Kitani A, Murray PJ, Strober W (2004) NOD2 is a negative regulator of toll-like receptor 2-mediated T helper type 1 responses. Nat Immunol 5(8):800–808

    Article  PubMed  CAS  Google Scholar 

  40. Creagh EM, O’Neill LA (2006) TLRs, NLRs and RLRs: a trinity of pathogen sensors that co-operate in innate immunity. Trends Immunol 27(8):352–357

    Article  PubMed  CAS  Google Scholar 

  41. Mariathasan S, Weiss DS, Newton K, McBride J, O’Rourke K, Roose-Girma M, Lee WP, Weinrauch Y, Monack DM, Dixit VM (2006) Cryopyrin activates the inflammasome in response to toxins and ATP. Nature 440(7081):228–232

    Article  PubMed  CAS  Google Scholar 

  42. Subramanian S, Tus K, Li QZ, Wang A, Tian XH, Zhou J, Liang C, Bartov G, McDaniel LD, Zhou XJ, Schultz RA, Wakeland EK (2006) A Tlr7 translocation accelerates systemic autoimmunity in murine lupus. Proc Natl Acad Sci USA 103(26):9970–9975

    Article  PubMed  CAS  Google Scholar 

  43. Pisitkun P, Deane JA, Difilippantonio MJ, Tarasenko T, Satterthwaite AB, Bolland SJ (2006) Autoreactive B cell responses to RNA-related antigens due to TLR7 gene duplication. Science 312:1669–1672

    Google Scholar 

  44. Davey MP, Martin TM, Planck SR, Lee J, Zamora D, Rosenbaum JT (2006) Human endothelial cells express NOD2/CARD15 and increase IL-6 secretion in response to muramyl dipeptide. Microvasc Res 71(2):103–107

    Article  PubMed  CAS  Google Scholar 

  45. Torgerson TR, Ochs HD (2002) Immune dysregulation, polyendocrinopathy, enteropathy, X-linked syndrome: a model of immune dysregulation. Curr Opin Allergy Clin Immunol 2(6):481–487

    Article  PubMed  Google Scholar 

  46. Anderson MS (2002) Autoimmune endocrine disease. Curr Opin Immunol 14:760–764

    Article  PubMed  CAS  Google Scholar 

  47. Rieux-Laucat F, Fischer A, Deist FL (2003) Cell-death signaling and human disease. Curr Opin Immunol 15(3):325–331

    Article  PubMed  CAS  Google Scholar 

  48. Cunninghame Graham DS, Vyse TJ (2004) The candidate gene approach: have murine models informed the study of human SLE? Clin Exp Immunol 137(1):1–7

    Article  PubMed  CAS  Google Scholar 

  49. Mathews CE (2005) Utility of murine models for the study of spontaneous autoimmune type 1 diabetes. Pediatr Diabetes 6(3):165–177

    Article  PubMed  Google Scholar 

  50. van den Berg WB (2005) Animal models of arthritis. What have we learned. J Rheumatol (Suppl 72):7–9

  51. Sakaguchi S, Sakaguchi N (2005) Animal models of arthritis caused by systemic alteration of the immune system. Curr Opin Immunol 17(6):589–594

    Article  PubMed  CAS  Google Scholar 

  52. McLachlan SM, Nagayama Y, Rapoport B (2005) Insight into Graves’ hyperthyroidism from animal models. Endocr Rev 26(6):800–832

    Article  PubMed  CAS  Google Scholar 

  53. Badami E, Maiuri L, Quaratino S (2005) High incidence of spontaneous autoimmune thyroiditis in immunocompetent self-reactive human T cell receptor transgenic mice. J Autoimmun 24(2):85–91

    Article  PubMed  CAS  Google Scholar 

  54. Lobito AA, Kimberley FC, Muppidi JR, Komarow H, Jackson AJ, Hull KM, Kastner DL, Screaton GR, Siegel RM (2006) Abnormal disulfide-linked oligomerization results in ER retention and altered signaling by TNFR1 mutants in TNFR1-associated periodic fever syndrome (TRAPS). Blood 108(4):1320–1327

    Article  PubMed  CAS  Google Scholar 

  55. Ferguson PJ, Bing X, Vasef MA, Ochoa LA, Mahgoub A, Waldschmidt TJ, Tygrett LT, Schlueter AJ, El-Shanti H (2006) A missense mutation in pstpip2 is associated with the murine autoinflammatory disorder chronic multifocal osteomyelitis. Bone 38(1):41–47

    Article  PubMed  CAS  Google Scholar 

  56. Grosse J, Chitu V, Marquardt A, Hanke P, Schmittwolf C, Zeitlmann L, Schropp P, Barth B, Yu P, Paffenholz R, Stumm G, Nehls M, Stanley ER (2006) Mutation of mouse Mayp/Pstpip2 causes a macrophage autoinflammatory disease. Blood 107(8):3350–3358

    Article  PubMed  CAS  Google Scholar 

  57. Matsuda M, Nakamura A, Tsuchiya S, Yoshida T, Horie S, Ikeda S (2006) Coexistence of familial Mediterranean fever and Behcet’s disease in a Japanese patient. Intern Med 45(12):799–800

    Article  PubMed  Google Scholar 

  58. Rabinovich E, Shinar Y, Leiba M, Ehrenfeld M, Langevitz P, Livneh A (2007) Common FMF alleles may predispose to development of Behcet’s disease with increased risk for venous thrombosis. Scand J Rheumatol 36(1):48–52

    Article  PubMed  CAS  Google Scholar 

  59. Jones G (2007) Susceptibility to asthma and eczema from mucosal and epidermal expression of distinctive genes. Curr Allergy Asthma Rep 7(1):11–17

    Article  PubMed  CAS  Google Scholar 

  60. Matziger P (2007) Friendly and dangerous signals: is the tissue in control? Nat Immunol 8(1):11–13

    Article  CAS  Google Scholar 

  61. McGonagle D, Stockwin L, Isaacs J, Emery P (2001) An enthesitis based model for the pathogenesis of spondyloarthropathy. Addictive effects of microbial adjuvant and biochemical factors at disease sites. J Rheumatol 28:2155–2159 (Oct)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dennis McGonagle.

Rights and permissions

Reprints and permissions

About this article

Cite this article

McGonagle, D., Savic, S. & McDermott, M.F. The NLR network and the immunological disease continuum of adaptive and innate immune-mediated inflammation against self. Semin Immunopathol 29, 303–313 (2007). https://doi.org/10.1007/s00281-007-0084-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00281-007-0084-1

Keywords

Navigation

-