Jump to content

Genistein: Difference between revisions

Page 1
Page 2
Content deleted Content added
Script assisted update of identifiers for the Chem/Drugbox validation project (updated: 'DrugBank', 'ChEBI').
Citation bot (talk | contribs)
Add: isbn, chapter. | Use this bot. Report bugs. | Suggested by Abductive | Category:Dietary supplements | #UCB_Category 19/232
 
(198 intermediate revisions by 86 users not shown)
Line 1: Line 1:
{{Distinguish|Genistin}}
{{chembox
{{multiple issues|
| verifiedrevid = 408564629
{{Primary sources|date=February 2020}}
{{More medical citations needed|date=June 2012}}
}}
{{Chembox
| Watchedfields = changed
| verifiedrevid = 443833756
| ImageFile = Genistein.svg
| ImageFile = Genistein.svg
| ImageSize = 200px
| ImageSize = 220px
| ImageFile1 = Genistein-3D-balls.png
| IUPACName = 5,7-Dihydroxy-3-(4-hydroxyphenyl)chromen-4-one
| ImageSize1 = 220
| OtherNames = 4',5,7-Trihydroxyisoflavone
| ImageAlt1 = Genistein molecule
| IUPACName = 4′,5,7-Trihydroxyisoflavone
| SystematicName = 5,7-Dihydroxy-3-(4-hydroxyphenyl)-4''H''-1-benzopyran-4-one
| OtherNames =
| Section1 = {{Chembox Identifiers
| Section1 = {{Chembox Identifiers
| IUPHAR_ligand = 2826
| ChemSpiderID_Ref = {{chemspidercite|correct|chemspider}}
| ChemSpiderID_Ref = {{chemspidercite|correct|chemspider}}
| ChemSpiderID = 4444448
| ChemSpiderID = 4444448
Line 11: Line 22:
| UNII = DH2M523P0H
| UNII = DH2M523P0H
| KEGG_Ref = {{keggcite|correct|kegg}}
| KEGG_Ref = {{keggcite|correct|kegg}}
| KEGG = C06563
| KEGG = D11680
| KEGG2 = C06563
| InChI = 1/C15H10O5/c16-9-3-1-8(2-4-9)11-7-20-13-6-10(17)5-12(18)14(13)15(11)19/h1-7,16-18H
| InChI = 1/C15H10O5/c16-9-3-1-8(2-4-9)11-7-20-13-6-10(17)5-12(18)14(13)15(11)19/h1-7,16-18H
| InChIKey = TZBJGXHYKVUXJN-UHFFFAOYAH
| InChIKey = TZBJGXHYKVUXJN-UHFFFAOYAH
Line 23: Line 35:
| CASNo = 446-72-0
| CASNo = 446-72-0
| PubChem = 5280961
| PubChem = 5280961
| DrugBank_Ref = {{drugbankcite|correct|drugbank}}
| DrugBank = DB01645
| DrugBank = DB01645
| ChEBI_Ref = {{ebicite|correct|EBI}}
| ChEBI = 28088
| ChEBI = 28088
| EINECS = 207-174-9
| Beilstein = 263823
| SMILES = Oc1ccc(cc1)C\3=C\Oc2cc(O)cc(O)c2C/3=O
| SMILES = Oc1ccc(cc1)C\3=C\Oc2cc(O)cc(O)c2C/3=O
}}
}}
| Section2 = {{Chembox Properties
| Section2 = {{Chembox Properties
| C=15 | H=10 | O=5
| C=15 | H=10 | O=5
| Appearance =
| MolarMass = 270.241 g/mol
| Density =
| ExactMass = 270.052823
| Appearance =
| MeltingPt =
| Density =
| BoilingPt =
| MeltingPt =
| Solubility =
| BoilingPt =
| Solubility =
}}
}}
| Section3 = {{Chembox Hazards
| Section3 = {{Chembox Hazards
| MainHazards =
| MainHazards =
| FlashPt =
| FlashPt =
| Autoignition =
| AutoignitionPt =
}}
}}
}}
}}


'''Genistein''' (C<sub>15</sub>H<sub>10</sub>O<sub>5</sub>) is a naturally occurring compound that structurally belongs to a class of compounds known as [[isoflavones]]. It is described as an [[angiogenesis inhibitor]] and a [[phytoestrogen]].<ref>{{Citation |last1=Sail |first1=Vibhavari |title=Chapter Eighteen - Notch Pathway Modulators as Anticancer Chemotherapeutics |date=2012-01-01 |url=http://www.sciencedirect.com/science/article/pii/B9780123964922000187 |volume=47 |pages=267–280 |editor-last=Desai |editor-first=Manoj C. |series=Annual Reports in Medicinal Chemistry |publisher=Academic Press |language=en |access-date=2020-09-14 |last2=Hadden |first2=M. Kyle |chapter=Notch Pathway Modulators as Anticancer Chemotherapeutics |doi=10.1016/B978-0-12-396492-2.00018-7|isbn=978-0-12-396492-2 }}</ref>
'''Genistein''' is one of several known [[isoflavones]]. Isoflavones, such as genistein and [[daidzein]], are found in a number of [[plant]]s including [[lupin]], [[fava bean]]s, [[soybean]]s, [[kudzu]], and [[psoralea]] being the primary food source,<ref>{{cite journal |author=Coward L, Barnes NC, Setchell KDR, Barnes S |title=Genistein, daidzein, and their β-glycoside conjugates: antitumor isoflavones in soybean foods from American and Asian diets |journal=J Agric Food Chem |volume=41 |issue=11 |pages=1961–1967 |year=1993 |doi=10.1021/jf00035a027 |url=http://pubs.acs.org/doi/abs/10.1021/jf00035a027}}</ref><ref>{{cite journal |author=Kaufman PB, Duke JA, Brielmann H, Boik J, Hoyt JE |title=A comparative survey of leguminous plants as sources of the isoflavones, genistein and daidzein: implications for human nutrition and health. |journal=J Altern Complement Med |volume=3 |issue=1 |pages=7–12 |year=1997 |pmid=9395689 |doi=10.1089/acm.1997.3.7}}</ref> also in the [[medicinal plant]], ''Flemingia vestita''<ref name="Rao">{{cite journal | last1 = Rao | first1 = HSP | last2 = Reddy | first2 = KS | author-separator =, | author-name-separator= | year = 1991 | title = Isofavones from ''Flemingia vestita'' | url = | journal = Fitoterapia | volume = 63 | issue = | page = 458 }}</ref> and [[coffee]]<ref>{{cite journal |author=Alves RC, Almeida IM, Casal S, Oliveira MB. |title=Isoflavones in coffee: influence of species, roast degree, and brewing method. |journal=J Agric Food Chem |volume=58 |issue=5 |pages=3002–3007 |year=2010 |pmid=20131840 |doi=10.1021/jf9039205 |url=http://dx.doi.org/10.1021/jf9039205}}</ref> Besides functioning as [[antioxidant]] and [[anthelmintic]], many [[isoflavones]] have been shown to interact with [[animal]] and [[human]] [[estrogen receptor]]s, causing effects in the body similar to those caused by the [[estrogen|hormone estrogen]]. [[Isoflavones]] also produce non-hormonal effects.


Genistein was first isolated in 1899 from the [[Genista tinctoria|dyer's broom, ''Genista tinctoria'']]; hence, the chemical name derived from the [[Genus|generic]] name. The compound nucleus was established in 1926, when it was found to be identical with prunetol. It was chemically synthesized in 1928.<ref>{{cite journal |author=Walter ED |year=1941 |title=Genistin (an isoflavone glucoside) and its aglucone, genistein, from soybeans |journal=J Am Chem Soc |volume=62 |issue=12 |pages=3273–3276 |doi=10.1021/ja01857a013}}</ref>
It was first isolated in 1899 from the [[Genista tinctoria|dyer's broom, ''Genista tinctoria'']]; hence, the chemical name. The compound structure was established in 1926, when it was found to be identical with that of '''prunetol'''. It was chemically synthesized in 1928.<ref>{{cite journal |last1=Walter |first1=E. D. |title=Genistin (an Isoflavone Glucoside) and its Aglucone, Genistein, from Soybeans |journal=Journal of the American Chemical Society |volume=63 |issue=12 |pages=3273–76 |year=1941 |doi=10.1021/ja01857a013}}</ref> It has been shown to be the primary secondary metabolite of the ''[[Trifolium]]'' species and ''[[Glycine max]]''.<ref>{{Cite journal |last1=Popiołkiewicz |first1=Joanna |last2=Polkowski |first2=Krzysztof |last3=Skierski |first3=Janusz S. |last4=Mazurek |first4=Aleksander P. |date=November 2005 |title=In vitro toxicity evaluation in the development of new anticancer drugs—genistein glycosides |url=http://dx.doi.org/10.1016/j.canlet.2005.01.014 |journal=Cancer Letters |volume=229 |issue=1 |pages=67–75 |doi=10.1016/j.canlet.2005.01.014 |pmid=16157220 |issn=0304-3835}}</ref>

==Natural occurrences==
Isoflavones such as genistein and [[daidzein]] are found in a number of plants including [[lupin]], [[fava bean]]s, [[soybean]]s, [[kudzu]], and [[psoralea]] being the primary food source,<ref>{{cite journal |last1=Coward |first1=Lori |last2=Barnes |first2=Neil C. |last3=Setchell |first3=Kenneth D. R. |last4=Barnes |first4=Stephen |year=1993 |title=Genistein, daidzein, and their β-glycoside conjugates: Antitumor isoflavones in soybean foods from American and Asian diets |journal=Journal of Agricultural and Food Chemistry |volume=41 |issue=11 |pages=1961–7 |doi=10.1021/jf00035a027}}</ref><ref>{{cite journal |last1=Kaufman |first1=Peter B. |last2=Duke |first2=James A. |last3=Brielmann |first3=Harry |last4=Boik |first4=John |last5=Hoyt |first5=James E. |year=1997 |title=A Comparative Survey of Leguminous Plants as Sources of the Isoflavones, Genistein and Daidzein: Implications for Human Nutrition and Health |journal=The Journal of Alternative and Complementary Medicine |volume=3 |issue=1 |pages=7–12 |pmid=9395689 |doi=10.1089/acm.1997.3.7 |citeseerx=10.1.1.320.9747}}</ref> also in the [[medicinal plant]]s, ''[[Flemingia vestita]]''<ref name="Rao">{{cite journal |last1=Rao |first1=H. S. P. |last2=Reddy |first2=K. S. |year=1991 |title=Isoflavones from ''Flemingia vestita'' |journal=Fitoterapia |volume=62 |issue=5 |pages=458}}</ref> and ''[[flemingia macrophylla|F. macrophylla]]'',<ref>{{cite journal |last1=Rao |first1=K.Nageswara |last2=Srimannarayana |first2=G. |year=1983 |title=Fleminone, a flavanone from the stems of ''Flemingia macrophylla'' |journal=Phytochemistry |volume=22 |issue=10 |pages=2287–90 |doi=10.1016/S0031-9422(00)80163-6|bibcode=1983PChem..22.2287R }}</ref><ref>{{cite journal |last1=Wang |first1=Bor-Sen |last2=Juang |first2=Lih-Jeng |last3=Yang |first3=Jeng-Jer |last4=Chen |first4=Li-Ying |last5=Tai |first5=Huo-Mu |last6=Huang |first6=Ming-Hsing |year=2012 |title=Antioxidant and Antityrosinase Activity of ''Flemingia macrophylla'' and ''Glycine tomentella'' Roots |journal=Evidence-Based Complementary and Alternative Medicine |volume=2012 |pages=1–7 |doi=10.1155/2012/431081 |pmid=22997529 |pmc=3444970 |doi-access=free}}</ref> and [[coffee]].<ref>{{cite journal |last1=Alves |first1=Rita C. |last2=Almeida |first2=Ivone M. C. |last3=Casal |first3=Susana |last4=Oliveira |first4=M. Beatriz P. P. |year=2010 |title=Isoflavones in Coffee: Influence of Species, Roast Degree, and Brewing Method |journal=Journal of Agricultural and Food Chemistry |volume=58 |issue=5 |pages=3002–7 |pmid=20131840 |doi=10.1021/jf9039205}}</ref> It can also be found in ''[[Maackia amurensis]]'' cell cultures.<ref>{{cite journal |last1=Fedoreyev |first1=S.A |last2=Pokushalova |first2=T.V |last3=Veselova |first3=M.V |last4=Glebko |first4=L.I |last5=Kulesh |first5=N.I |last6=Muzarok |first6=T.I |last7=Seletskaya |first7=L.D |last8=Bulgakov |first8=V.P |last9=Zhuravlev |first9=Yu.N |year=2000 |title=Isoflavonoid production by callus cultures of Maackia amurensis |journal=Fitoterapia |volume=71 |issue=4 |pages=365–72 |pmid=10925005 |doi=10.1016/S0367-326X(00)00129-5}}</ref>

==Biological effects==
Besides functioning as an [[antioxidant]] and [[anthelmintic]], many [[isoflavone]]s have been shown to interact with [[animal]] and [[human]] [[estrogen receptor]]s, causing effects in the body similar to those caused by the [[estrogen|hormone estrogen]]. [[Isoflavone]]s also produce non-hormonal effects.{{Citation needed|date=April 2022}}


==Biological effects ==
===Molecular function===
===Molecular function===
Genistein influences several targets in living cells, what leads to many, frequently exclusive or paradoxical conclusions
Genistein influences multiple [[biochemical]] functions in living cells:

*activation of [[PPAR]]s
* [[full agonist]] of [[ERβ]] ([[EC50|EC<sub>50</sub>]] = 7.62 nM) and, to a much lesser extent (~20-fold), [[full agonist]]<ref name="PatisaulMelby2002">{{cite journal |last1=Patisaul |first1=Heather B. |last2=Melby |first2=Melissa |last3=Whitten |first3=Patricia L. |last4=Young |first4=Larry J. |title=Genistein Affects ERβ- But Not ERα-Dependent Gene Expression in the Hypothalamus |journal=Endocrinology |volume=143 |issue=6 |year=2002 |pages=2189–2197 |issn=0013-7227 |doi=10.1210/endo.143.6.8843 |pmid=12021182 |doi-access=free}}</ref> or [[partial agonist]] of [[ERα]]<ref name="Green2015">{{Citation |last=Green |first=Sarah E |title=In Vitro Comparison of Estrogenic Activities of Popular Women's Health Botanicals |year=2015 |url=https://indigo.uic.edu/handle/10027/19647 |access-date=2016-01-01 |archive-date=2016-02-22 |archive-url=https://web.archive.org/web/20160222183517/https://indigo.uic.edu/handle/10027/19647 |url-status=dead}}</ref>
*inhibition of several [[tyrosine kinase]]s
* agonist of [[G protein-coupled estrogen receptor]] (affinity of 133&nbsp;nM)<ref name="pmid26023144">{{cite journal |vauthors=Prossnitz ER, Arterburn JB |title=International Union of Basic and Clinical Pharmacology. XCVII. G Protein-Coupled Estrogen Receptor and Its Pharmacologic Modulators |journal=Pharmacol. Rev. |volume=67 |issue=3 |pages=505–40 |date=July 2015 |pmid=26023144 |pmc=4485017 |doi=10.1124/pr.114.009712}}</ref><ref name="ProssnitzBarton2014">{{cite journal |last1=Prossnitz |first1=Eric R. |last2=Barton |first2=Matthias |title=Estrogen biology: New insights into GPER function and clinical opportunities |journal=Molecular and Cellular Endocrinology |volume=389 |issue=1–2 |year=2014 |pages=71–83 |issn=0303-7207 |doi=10.1016/j.mce.2014.02.002 |pmid=24530924 |pmc=4040308}}</ref>
*inhibition of [[topoisomerase]]
* activation of peroxisome proliferator-activated receptors ([[PPAR]]s)
*direct antioxidant with some proxidative features
* inhibition of several [[tyrosine kinase]]s
*activation of [[Nrf2]] antioxidative response
* inhibition of [[topoisomerase]]
*stimulation of [[autophagy]]<ref name="Gossner-2007">{{Cite journal | last1 = Gossner | first1 = G. | last2 = Choi | first2 = M. | last3 = Tan | first3 = L. | last4 = Fogoros | first4 = S. | last5 = Griffith | first5 = KA. | last6 = Kuenker | first6 = M. | last7 = Liu | first7 = JR. | title = Genistein-induced apoptosis and autophagocytosis in ovarian cancer cells. | journal = Gynecol Oncol | volume = 105 | issue = 1 | pages = 23–30 | month = Apr | year = 2007 | doi = 10.1016/j.ygyno.2006.11.009 | PMID = 17234261 }}</ref><ref name="Singletary-2008">{{Cite journal | last1 = Singletary | first1 = K. | last2 = Milner | first2 = J. | title = Diet, autophagy, and cancer: a review. | journal = Cancer Epidemiol Biomarkers Prev | volume = 17 | issue = 7 | pages = 1596–610 | month = Jul | year = 2008 | doi = 10.1158/1055-9965.EPI-07-2917 | PMID = 18628411 }}</ref><ref name="Nakamura-2009">{{Cite journal | last1 = Nakamura | first1 = Y. | last2 = Yogosawa | first2 = S. | last3 = Izutani | first3 = Y. | last4 = Watanabe | first4 = H. | last5 = Otsuji | first5 = E. | last6 = Sakai | first6 = T. | title = A combination of indol-3-carbinol and genistein synergistically induces apoptosis in human colon cancer HT-29 cells by inhibiting Akt phosphorylation and progression of autophagy. | journal = Mol Cancer | volume = 8 | issue = | pages = 100 | month = | year = 2009 | doi = 10.1186/1476-4598-8-100 | pmid = 19909554 | pmc=2784428}}</ref>
* inhibition of [[Aromatic L-amino acid decarboxylase|AAAD]]
*activation of [[estrogen receptor]] beta
* direct antioxidation with some pro oxidative features
*inhibition of the mammalian [[hexose]] transporter [[GLUT1]]
* activation of [[Nrf2]] antioxidative response
*contraction of several types of [[smooth muscle]]s
* stimulation of [[autophagy]]<ref name="Gossner-2007">{{cite journal |last1=Gossner |first1=G |last2=Choi |first2=M |last3=Tan |first3=L |last4=Fogoros |first4=S |last5=Griffith |first5=K |last6=Kuenker |first6=M |last7=Liu |first7=J |year=2007 |title=Genistein-induced apoptosis and autophagocytosis in ovarian cancer cells |journal=Gynecologic Oncology |volume=105 |issue=1 |pages=23–30 |pmid=17234261 |doi=10.1016/j.ygyno.2006.11.009}}</ref><ref name="Singletary-2008">{{cite journal |last1=Singletary |first1=K. |last2=Milner |first2=J. |year=2008 |title=Diet, Autophagy, and Cancer: A Review |journal=Cancer Epidemiology, Biomarkers & Prevention |volume=17 |issue=7 |pages=1596–610 |pmid=18628411 |doi=10.1158/1055-9965.EPI-07-2917 |doi-access=free}}</ref><ref name="Nakamura-2009">{{cite journal |last1=Nakamura |first1=Yoshitaka |last2=Yogosawa |first2=Shingo |last3=Izutani |first3=Yasuyuki |last4=Watanabe |first4=Hirotsuna |last5=Otsuji |first5=Eigo |last6=Sakai |first6=Tosiyuki |year=2009 |title=A combination of indol-3-carbinol and genistein synergistically induces apoptosis in human colon cancer HT-29 cells by inhibiting Akt phosphorylation and progression of autophagy |journal=Molecular Cancer |volume=8 |pages=100 |pmc=2784428 |pmid=19909554 |doi=10.1186/1476-4598-8-100 |doi-access=free }}</ref>
*modulation of CFTR channel, potentiating its opening at low concentration and inhibiting it a higher doses.
* inhibition of the mammalian [[hexose]] transporter [[GLUT1]]
* contraction of several types of [[smooth muscle]]s
* modulation of CFTR channel, potentiating its opening at low concentration and inhibiting it a higher doses.
* inhibition of cytosine methylation
* inhibition of [[DNA methyltransferase]]<ref>{{cite journal |last1=Fang |first1=Mingzhu |last2=Chen |first2=Dapeng |last3=Yang |first3=Chung S. |date=January 2007 |title=Dietary polyphenols may affect DNA methylation |journal=The Journal of Nutrition |volume=137 |issue=1 Suppl |pages=223S–228S |pmid=17182830 |doi=10.1093/jn/137.1.223S |doi-access=free}}</ref>
* inhibition of the [[glycine receptor]]
* inhibition of the [[nicotinic acetylcholine receptor]]<ref>{{Cite journal |last1=Glushakov |first1=A. V. |last2=Glushakova |first2=H. Y. |last3=Skok |first3=V. I. |date=1999-01-15 |title=Modulation of nicotinic acetylcholine receptor activity in submucous neurons by intracellular messengers |journal=Journal of the Autonomic Nervous System |volume=75 |issue=1 |pages=16–22 |issn=0165-1838 |pmid=9935265 |doi=10.1016/S0165-1838(98)00165-9}}</ref>


===Activation of PPARs===
===Activation of PPARs===
Isoflavones genistein and daidzein bind to and transactivate all three PPAR isoforms, α, δ, and γ.<ref name=pmid25083916>{{cite journal |last1=Wang |first1=Limei |last2=Waltenberger |first2=Birgit |last3=Pferschy-Wenzig |first3=Eva-Maria |last4=Blunder |first4=Martina |last5=Liu |first5=Xin |last6=Malainer |first6=Clemens |last7=Blazevic |first7=Tina |last8=Schwaiger |first8=Stefan |last9=Rollinger |first9=Judith M. |last10=Heiss |first10=Elke H. |last11=Schuster |first11=Daniela |last12=Kopp |first12=Brigitte |last13=Bauer |first13=Rudolf |last14=Stuppner |first14=Hermann |last15=Dirsch |first15=Verena M. |last16=Atanasov |first16=Atanas G. |year=2014 |title=Natural product agonists of peroxisome proliferator-activated receptor gamma (PPARγ): A review |journal=Biochemical Pharmacology |pmid=25083916 |doi=10.1016/j.bcp.2014.07.018 |pmc=4212005 |volume=92 |issue=1 |pages=73–89}}</ref> For example, membrane-bound PPARγ-binding assay showed that genistein can directly interact with the PPARγ ligand binding domain and has a measurable Ki of 5.7 mM.<ref>{{cite journal |last1=Dang |first1=Zhi-Chao |last2=Audinot |first2=Valérie |last3=Papapoulos |first3=Socrates E. |last4=Boutin |first4=Jean A. |last5=Löwik |first5=Clemens W. G. M. |year=2002 |title=Peroxisome Proliferator-activated Receptor γ (PPARγ) as a Molecular Target for the Soy Phytoestrogen Genistein |journal=Journal of Biological Chemistry |volume=278 |issue=2 |pages=962–7 |pmid=12421816 |doi=10.1074/jbc.M209483200 |doi-access=free}}</ref> Gene reporter assays showed that genistein at concentrations between 1 and 100 uM activated PPARs in a dose dependent way in KS483 mesenchymal progenitor cells, breast cancer MCF-7 cells, T47D cells and MDA-MD-231 cells, murine macrophage-like RAW 264.7 cells, endothelial cells and in Hela cells. Several studies have shown that both ERs and PPARs influenced each other and therefore induce differential effects in a dose-dependent way. The final biological effects of genistein are determined by the balance among these pleiotrophic actions.<ref name=pmid25083916/><ref>{{cite journal |last1=Dang |first1=Zhi Chao |last2=Lowik |first2=Clemens |year=2005 |title=Dose-dependent effects of phytoestrogens on bone |journal=Trends in Endocrinology and Metabolism |volume=16 |issue=5 |pages=207–13 |pmid=15922618 |doi=10.1016/j.tem.2005.05.001 |s2cid=35366615}}</ref><ref>{{cite journal |last1=Dang |first1=Z. C. |year=2009 |title=Dose-dependent effects of soy phyto-oestrogen genistein on adipocytes: Mechanisms of action |journal=Obesity Reviews |volume=10 |issue=3 |pages=342–9 |pmid=19207876 |doi=10.1111/j.1467-789X.2008.00554.x |s2cid=13804244}}</ref>

Isoflavones genistein and daidzein bind to and transactivate all three PPAR isoforms, α, δ, and γ. For example, membrane-bound PPARγ-binding assay showed that genistein can directly interact with the PPARγ ligand binding domain and has a measurable Ki of 5.7 mM.<ref>Dang Z.C. Audinot V., Papapoulos S. Boutin J.A., and Löwik C. Peroxisome proliferator-activated receptor g (PPARg) as a molecular target for the soy phytoestrogen genistein. Journal of Biological Chemistry. 2003, 278, 962-967.</ref> Gene reporter assays showed that genistein at concentrations between 1 and 100 uM activated PPARs in a dose dependent way in KS483 mesenchymal progenitor cells, breast cancer MCF-7 cells, T47D cells and MDA-MD-231 cells, murine macrophage-like RAW 264.7 cells, endothelial cells and in Hela cells. Several studies have shown that both ERs and PPARs influenced each other and therefore induce differential effects in a dose-dependent way. The final biological effects of genistein are determined by the balance among these pleiotrophic actions.<ref>Dang Z.C. and Löwik C. Dose-dependent effects of phytoestrogens on bone: molecular mechanisms, review paper, Trends in Endocrinology and Metabolism. 2005, 16, 207-213.</ref><ref>Dang Z.C. Dose-dependent effects of soy phyto-oestrogen genistein on adipocytes: mechanisms of action. Obesity Review. 2009, 10, 342-349.</ref>


===Tyrosine kinase inhibitor===
===Tyrosine kinase inhibitor===
The main known activity of genistein is [[tyrosine kinase inhibitor]], mostly of [[epidermal growth factor receptor]] (EGFR). Tyrosine kinases are less widespread than their ser/thr counterparts but implicated in almost all cell growth and proliferation signal cascades.{{citation needed|date=September 2014}}


===Redox-active—not only antioxidant===
The main known activity of genistein is [[tyrosine kinase inhibitor]], mostly of [[epidermal growth factor receptor]] [[EGFR]]. Tyrosine kinases are less widespread than their ser/thr counterparts but implicated in almost all cell growth and proliferation signal cascades.
Genistein may act as direct [[antioxidant]], similar to many other [[isoflavone]]s, and thus may alleviate damaging effects of [[free radicals]] in tissues.<ref name="Han-2009">{{cite journal |last1=Han |first1=Rui-Min |last2=Tian |first2=Yu-Xi |last3=Liu |first3=Yin |last4=Chen |first4=Chang-Hui |last5=Ai |first5=Xi-Cheng |last6=Zhang |first6=Jian-Ping |last7=Skibsted |first7=Leif H. |year=2009 |title=Comparison of Flavonoids and Isoflavonoids as Antioxidants |journal=Journal of Agricultural and Food Chemistry |volume=57 |issue=9 |pages=3780–5 |pmid=19296660 |doi=10.1021/jf803850p}}</ref><ref name="Borrás-2010">{{cite journal |last1=Borrás |first1=Consuelo |last2=Gambini |first2=Juan |last3=López-Grueso |first3=Raúl |last4=Pallardó |first4=Federico V. |last5=Viña |first5=Jose |year=2010 |title=Direct antioxidant and protective effect of estradiol on isolated mitochondria |journal=Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease |volume=1802 |issue=1 |pages=205–11 |pmid=19751829 |doi=10.1016/j.bbadis.2009.09.007 |url=https://hal.archives-ouvertes.fr/hal-00543009/file/PEER_stage2_10.1016%252Fj.bbadis.2009.09.007.pdf}}</ref>

===Redox-active - not only antioxidant===

Genistein may act as direct [[antioxidant]], similar to many other [[isoflavones]], may alleviate damaging effects of [[free radicals]] in tissues.<ref name="Han-2009">{{Cite journal | last1 = Han | first1 = RM. | last2 = Tian | first2 = YX. | last3 = Liu | first3 = Y. | last4 = Chen | first4 = CH. | last5 = Ai | first5 = XC. | last6 = Zhang | first6 = JP. | last7 = Skibsted | first7 = LH. | title = Comparison of flavonoids and isoflavonoids as antioxidants. | journal = J Agric Food Chem | volume = 57 | issue = 9 | pages = 3780–5 | month = May | year = 2009 | doi = 10.1021/jf803850p | PMID = 19296660 }}</ref><ref name="Borrás-2010">{{Cite journal | last1 = Borrás | first1 = C. | last2 = Gambini | first2 = J. | last3 = López-Grueso | first3 = R. | last4 = Pallardó | first4 = FV. | last5 = Viña | first5 = J. | title = Direct antioxidant and protective effect of estradiol on isolated mitochondria. | journal = Biochim Biophys Acta | volume = 1802 | issue = 1 | pages = 205–11 | month = Jan | year = 2010 | doi = 10.1016/j.bbadis.2009.09.007 | PMID = 19751829 }}</ref>


The same molecule of genistein, similar to many other [[isoflavones]], by '''generation''' of free radicals poison [[topoisomerase]] II, enzyme important for maintaining DNA stability.<ref name="Bandele-2007">{{Cite journal | last1 = Bandele | first1 = OJ. | last2 = Osheroff | first2 = N. | title = Bioflavonoids as poisons of human topoisomerase II alpha and II beta. | journal = Biochemistry | volume = 46 | issue = 20 | pages = 6097–108 | month = May | year = 2007 | doi = 10.1021/bi7000664 | pmid = 17458941 | pmc=2893030}}</ref><ref name="Markovits-1989">{{Cite journal | last1 = Markovits | first1 = J. | last2 = Linassier | first2 = C. | last3 = Fossé | first3 = P. | last4 = Couprie | first4 = J. | last5 = Pierre | first5 = J. | last6 = Jacquemin-Sablon | first6 = A. | last7 = Saucier | first7 = JM. | last8 = Le Pecq | first8 = JB. | last9 = Larsen | first9 = AK. | title = Inhibitory effects of the tyrosine kinase inhibitor genistein on mammalian DNA topoisomerase II. | journal = Cancer Res | volume = 49 | issue = 18 | pages = 5111–7 | month = Sep | year = 1989 | doi = | PMID = 2548712 }}</ref><ref name="López-Lazaro-2007">{{Cite journal | last1 = López-Lazaro | first1 = M. | last2 = Willmore | first2 = E. | last3 = Austin | first3 = CA. | title = Cells lacking DNA topoisomerase II beta are resistant to genistein. | journal = J Nat Prod | volume = 70 | issue = 5 | pages = 763–7 | month = May | year = 2007 | doi = 10.1021/np060609z | PMID = 17411092 }}</ref>
The same molecule of genistein, similar to many other [[isoflavone]]s, by generation of free radicals poison [[topoisomerase]] II, an enzyme important for maintaining DNA stability.<ref name="pmid17458941">{{cite journal |last1=Bandele |first1=Omari J. |last2=Osheroff |first2=Neil |year=2007 |title=Bioflavonoids as Poisons of Human Topoisomerase IIα and IIβ |journal=Biochemistry |volume=46 |issue=20 |pages=6097–108 |pmid=17458941 |doi=10.1021/bi7000664 |pmc=2893030}}</ref><ref name="Markovits-1989">{{cite journal |last1=Markovits |first1=Judith |last2=Linassier |first2=Claude |last3=Fossé |first3=Philippe |last4=Couprie |first4=Jeanine |last5=Pierre |first5=Josiane |last6=Jacquemin-Sablon |first6=Alain |last7=Saucier |first7=Jean-Marie |last8=Le Pecq |first8=Jean-Bernard |last9=Larsen |first9=Annette K. |date=September 1989 |title=Inhibitory effects of the tyrosine kinase inhibitor genistein on mammalian DNA topoisomerase II |journal=Cancer Research |volume=49 |issue=18 |pages=5111–7 |pmid=2548712 |url=http://cancerres.aacrjournals.org/cgi/pmidlookup?view=long&pmid=2548712}}
</ref><ref name="López-Lazaro-2007">{{cite journal |last1=López-Lázaro |first1=Miguel |last2=Willmore |first2=Elaine |last3=Austin |first3=Caroline A. |year=2007 |title=Cells Lacking DNA Topoisomerase IIβ are Resistant to Genistein |journal=Journal of Natural Products |volume=70 |issue=5 |pages=763–7 |pmid=17411092 |doi=10.1021/np060609z}}</ref>


Human cells turn on beneficial, detoxyfying [[Nrf2]] factor in response to genistein insult. This pathway may be responsible for observed health maintaining properities of small doses of genistein.<ref name="Mann-2009">{{Cite journal | last1 = Mann | first1 = GE. | last2 = Bonacasa | first2 = B. | last3 = Ishii | first3 = T. | last4 = Siow | first4 = RC. | title = Targeting the redox sensitive Nrf2-Keap1 defense pathway in cardiovascular disease: protection afforded by dietary isoflavones. | journal = Curr Opin Pharmacol | volume = 9 | issue = 2 | pages = 139–45 | month = Apr | year = 2009 | doi = 10.1016/j.coph.2008.12.012 | PMID = 19157984 }}</ref>
Human cells turn on beneficial, detoxifying [[Nrf2]] factor in response to genistein insult. This pathway may be responsible for observed health maintaining properties of small doses of genistein.<ref name="Mann-2009">{{cite journal |last1=Mann |first1=Giovanni E |last2=Bonacasa |first2=Barbara |last3=Ishii |first3=Tetsuro |last4=Siow |first4=Richard CM |year=2009 |title=Targeting the redox sensitive Nrf2–Keap1 defense pathway in cardiovascular disease: Protection afforded by dietary isoflavones |journal=Current Opinion in Pharmacology |volume=9 |issue=2 |pages=139–45 |pmid=19157984 |doi=10.1016/j.coph.2008.12.012}}</ref>


===Anthelmintic===
===Anthelmintic===
The root-tuber peel extract of the [[leguminous|leguminous plant]] ''[[Flemingia vestita]]'' is the traditional [[anthelmintics|anthelmintic]] of the [[Khasi people|Khasi tribes]] of India. While investigating its anthelmintic activity, genistein was found to be the major [[isoflavone]] responsible for the [[deworming]] property.<ref name="Rao"/><ref name="Tan">{{cite journal |last1=Tandon |first1=V. |last2=Pal |first2=P. |last3=Roy |first3=B. |last4=Rao |first4=H. S. P. |last5=Reddy |first5=K. S. |year=1997 |title=In vitro anthelmintic activity of root-tuber extract of ''Flemingia vestita'', an indigenous plant in Shillong, India |journal=Parasitology Research |volume=83 |issue=5 |pages=492–8 |pmid=9197399 |doi=10.1007/s004360050286 |s2cid=25086153 |url=http://dspace.nehu.ac.in/handle/1/1464}}</ref> Genistein was subsequently demonstrated to be highly effective against [[intestinal parasite]]s such as the [[poultry]] [[tapeworm|cestode]] ''[[Raillietina echinobothrida]]'',<ref name="Tan"/> the [[pig|pork]] [[trematode]] '' [[Fasciolopsis|Fasciolopsis buski]]'',<ref>{{cite journal |last1=Kar |first1=Pradip K |last2=Tandon |first2=Veena |last3=Saha |first3=Nirmalendu |year=2002 |title=Anthelmintic efficacy of ''Flemingia vestita'': Genistein-induced effect on the activity of nitric oxide synthase and nitric oxide in the trematode parasite, ''Fasciolopsis buski'' |journal=Parasitology International |volume=51 |issue=3 |pages=249–57 |pmid=12243779 |doi=10.1016/S1383-5769(02)00032-6 |url=http://dspace.nehu.ac.in/handle/1/3556}}</ref> and the [[Fasciola hepatica|sheep liver fluke ''Fasciola hepatica'']].<ref>{{cite journal |last1=Toner |first1=E. |last2=Brennan |first2=G. P. |last3=Wells |first3=K. |last4=McGeown |first4=J. G. |last5=Fairweather |first5=I. |year=2008 |title=Physiological and morphological effects of genistein against the liver fluke, ''Fasciola hepatica'' |journal=Parasitology |volume=135 |issue=10 |pages=1189–203 |pmid=18771609 |doi=10.1017/S0031182008004630 |s2cid=6525410}}</ref> It exerts its anthelmintic activity by inhibiting the enzymes of [[glycolysis]] and [[glycogenolysis]],<ref>{{cite journal |last1=Tandon |first1=Veena |last2=Das |first2=Bidyadhar |last3=Saha |first3=Nirmalendu |year=2003 |title=Anthelmintic efficacy of ''Flemingia vestita'' (Fabaceae): Effect of genistein on glycogen metabolism in the cestode, ''Raillietina echinobothrida'' |journal=Parasitology International |volume=52 |issue=2 |pages=179–86 |pmid=12798931 |doi=10.1016/S1383-5769(03)00006-0}}</ref><ref>{{cite journal |last1=Das |first1=B. |last2=Tandon |first2=V. |last3=Saha |first3=N. |year=2004 |title=Anthelmintic efficacy of ''Flemingia vestita'' (Fabaceae): Alteration in the activities of some glycolytic enzymes in the cestode, ''Raillietina echinobothrida'' |journal=Parasitology Research |volume=93 |issue=4 |pages=253–61 |pmid=15138892 |doi=10.1007/s00436-004-1122-8 |s2cid=9491127 |url=http://dspace.nehu.ac.in/handle/1/3458}}</ref> and disturbing the [[calcium homeostasis|Ca2+ homeostasis]] and [[nitric oxide|NO]] activity in the [[parasitism|parasites]].<ref>{{cite journal |doi=10.1016/j.parint.2005.08.002 |pmid=16198617 |title=Effect of isoflavone from Flemingia vestita (Fabaceae) on the Ca2+ homeostasis in Raillietina echinobothrida, the cestode of domestic fowl |journal=Parasitology International |volume=55 |issue=1 |pages=17–21 |year=2006 |last1=Das |first1=Bidyadhar |last2=Tandon |first2=Veena |last3=Saha |first3=Nirmalendu |url=http://dspace.nehu.ac.in/handle/1/3794}}</ref><ref>{{cite journal |last1=Das |first1=Bidyadhar |last2=Tandon |first2=Veena |last3=Lyndem |first3=Larisha M. |last4=Gray |first4=Alexander I. |last5=Ferro |first5=Valerie A. |year=2009 |title=Phytochemicals from ''Flemingia vestita'' (Fabaceae) and ''Stephania glabra'' (Menispermeaceae) alter cGMP concentration in the cestode ''Raillietina echinobothrida'' |journal=Comparative Biochemistry and Physiology C |volume=149 |issue=3 |pages=397–403 |pmid=18854226 |doi=10.1016/j.cbpc.2008.09.012 |url=http://dspace.nehu.ac.in/handle/1/3778}}</ref> It has also been investigated in [[tapeworm|human tapeworms]] such as ''[[Echinococcus multilocularis]]'' and ''[[Echinococcus granulosus|E. granulosus]]'' metacestodes that genistein and its derivatives, Rm6423 and Rm6426, are potent [[anthelmintics|cestocides]].<ref>{{cite journal |last1=Naguleswaran |first1=Arunasalam |last2=Spicher |first2=Martin |last3=Vonlaufen |first3=Nathalie |last4=Ortega-Mora |first4=Luis M. |last5=Torgerson |first5=Paul |last6=Gottstein |first6=Bruno |last7=Hemphill |first7=Andrew |year=2006 |title=In Vitro Metacestodicidal Activities of Genistein and Other Isoflavones against'' Echinococcus multilocularis'' and ''Echinococcus granulosus'' |journal=Antimicrobial Agents and Chemotherapy |volume=50 |issue=11 |pages=3770–8 |pmid=16954323 |doi=10.1128/AAC.00578-06 |pmc=1635224}}</ref>
The root-tuber peel extract of the [[leguminous|leguminous plant]] ''Felmingia vestita'' is the traditional [[anthelmintics|anthelmitic]] of the [[Khasi people|Khasi tribes]] of India. While investigating its anthelmintic activity, genistein was found to be the major [[isoflavone]] responsible for the [[deworming]] property.<ref name="Rao"/><ref name="Tan">{{cite journal |author=Tandon V, Pal P, Roy B, Rao HS, Reddy KS. |title=In vitro anthelmintic activity of root-tuber extract of ''Flemingia vestita'', an indigenous plant in Shillong, India |journal=Parasitol Res |volume=83 |issue=5 |pages=492–298 |year=1997 |pmid=9197399 |doi=10.1007/s004360050286}}</ref> Genistein was subsequently demonstrated to be highly effective against [[intestinal parasite]]s such as the [[poultry]] [[tapeworm|cestode]] ''[[Raillietina echinobothrida]]'',<ref name="Tan"/> the [[pig|pork]] [[trematode]] ''[[Fasciolopsis| Fasciolopsis buski]]'',<ref>{{cite journal |author=Kar PK, Tandon V, Saha N. |title=Anthelmintic efficacy of Flemingia vestita: genistein-induced effect on the
activity of nitric oxide synthase and nitric oxide in the trematode parasite, ''Fasciolopsis buski'' |journal=Parasitol Int |volume=51 |issue=1 |pages=249–257 |year=2002 |pmid=12243779 |doi=10.1016/S1383-5769(02)00032-6}}</ref> and the [[Fasciola hepatica|sheep liver fluke ''Fasciola hepatica'']].<ref>{{cite journal |author=Toner E, Brennan GP, Wells K, McGeon JG, Fairweather I. |title=Physiological and morphological effects of genistein against the liver fluke, ''Fasciola hepatica'' |journal=Parasitology |volume=135 |pages=1189–1203 |year=2008 |doi=10.1017/S0031182008004630 |pmid=18771609 |issue=10 |url=http://journals.cambridge.org/action/displayAbstract?fromPage=online&aid=2185404}}</ref> It exerts its anthelmintic activity by inhibiting the enzymes of [[glycolysis]] and [[glycogenolysis]],<ref>{{cite journal |author=Tandon V, Das B, Saha N. |title=Anthelmintic efficacy of ''Flemingia vestita'' (Fabaceae): Effect of genistein on glycogen metabolism in the cestode, ''Raillietina echinobothrida'' |journal=Parasitol Int |volume=52 |issue=2 |pages=179–183 |year=2003 |pmid=12798931 |doi=10.1016/S1383-5769(03)00006-0}}</ref><ref>{{cite journal |author=Das B, Tandon V, Saha N. |title=Anthelmintic efficacy of Flemingia vestita (Fabaceae): alteration in the activities of some glycolytic enzymes in the cestode, ''Raillietina echinobothrida'' |journal=Parasitol Res |volume=93 |issue=4 |pages=253–261 |year=2004 |pmid=15138892 |doi=10.1007/s00436-004-1122-8}}</ref> and disturbing the [[calcium homeostasis|Ca2+ homeostasis]] and [[nitric oxide|NO]] activity in the [[parasitism|parasites]].<ref>{{cite journal |author=Das B, Tandon V, Saha N. |title=Effect of isoflavone from ''Flemingia vestita'' (Fabaceae) on the Ca2+ homeostasis in ''Raillietina echinobothrida'', the cestode of domestic fowl |journal=Parasitol Int |volume=55 |issue=1 |pages=17–21 |year=2006 |pmid=16198617 |doi=10.1016/j.parint.2005.08.002}}</ref><ref>{{cite journal |author=Das B, Tandon V, Lyndem LM, Gray AI, Ferro VA. |title=Phytochemicals from ''Flemingia vestita'' (Fabaceae) and ''Stephania glabra'' (Menispermeaceae) alter cGMP concentration in the cestode ''Raillietina echinobothrida'' |journal=Comp Biochem Physiol C Toxicol Pharmacol |volume=149 |issue=3 |pages=397–403 |year=2009 |pmid=18854226 |doi=10.1016/j.cbpc.2008.09.012}}</ref> It has also been investigated in [[tapeworm|human tapeworms]] such as ''[[Echinococcus multilocularis]]'' and ''[[Echinococcus granulosus|E. granulosus]]'' metacestodes that genistein and its derivatives, Rm6423 and Rm6426, are potent [[anthelmintics|cestocides]].<ref>{{cite journal |author=Naguleswaran A, Spicher M, Vonlaufen N, Ortega-Mora LM, Torgerson P, Gottstein B, Hemphill A |title=In vitro metacestodicidal activities of genistein and other isoflavones against ''Echinococcus multilocularis'' and ''Echinococcus granulosus'' |journal=Antimicrob Agents Chemother |volume=50 |issue=1 |pages=3770–3778 |year=2006 |doi=10.1128/AAC.00578-06 |pmid=16954323 |pmc=1635224 |url=http://aac.asm.org/cgi/content/full/50/11/3770}}</ref>


===Atherosclerosis===
===Atherosclerosis===
Genistein protects against pro-inflammatory factor-induced vascular endothelial barrier dysfunction and inhibits [[leukocyte]]-[[endothelium]] interaction, thereby modulating vascular inflammation, a major event in the [[pathogenesis]] of [[atherosclerosis]].<ref>{{cite journal |last1=Si |first1=Hongwei |last2=Liu |first2=Dongmin |last3=Si |first3=Hongwei |last4=Liu |first4=Dongmin |year=2007 |title=Phytochemical Genistein in the Regulation of Vascular Function: New Insights |journal=Current Medicinal Chemistry |volume=14 |issue=24 |pages=2581–9 |pmid=17979711 |doi=10.2174/092986707782023325}}</ref>

Genistein protects against pro-inflammatory factor-induced vascular endothelial barrier dysfunction and inhibits [[leukocyte]]-[[endothelium]] interaction, thereby modulating vascular inflammation, a major event in the [[pathogenesis]] of [[atherosclerosis]].<ref>{{cite journal |author=Si H, Liu D |title=Phytochemical genistein in the regulation of vascular function: new insights |journal=Curr. Med. Chem. |volume=14 |issue=24 |pages=2581–9 |year=2007 |pmid=17979711 |url=http://www.bentham-direct.org/pages/content.php?CMC/2007/00000014/00000024/0007C.SGM |doi=10.2174/092986707782023325}}</ref>


===Cancer links===
===Cancer links===
Genistein and other [[isoflavone]]s have been identified as [[angiogenesis inhibitors]], and found to inhibit the uncontrolled cell growth of [[cancer]], most likely by inhibiting the activity of substances in the body that regulate [[cell division]] and cell survival ([[growth factors]]). Various studies have found that moderate doses of genistein have inhibitory effects on [[cancer]]s of the [[prostate]],<ref name=pmid11305594>{{cite journal |last1=Morito |first1=Keiko |last2=Hirose |first2=Toshiharu |last3=Kinjo |first3=Junei |last4=Hirakawa |first4=Tomoki |last5=Okawa |first5=Masafumi |last6=Nohara |first6=Toshihiro |last7=Ogawa |first7=Sumito |last8=Inoue |first8=Satoshi |last9=Muramatsu |first9=Masami |last10=Masamune |first10=Yukito |year=2001 |title=Interaction of Phytoestrogens with Estrogen Receptors α and β |journal=Biological & Pharmaceutical Bulletin |volume=24 |issue=4 |pages=351–6 |pmid=11305594 |doi=10.1248/bpb.24.351|doi-access=free }}</ref><ref>{{cite journal |last1=Hwang |first1=Ye Won |last2=Kim |first2=Soo Young |last3=Jee |first3=Sun Ha |last4=Kim |first4=Youn Nam |last5=Nam |first5=Chung Mo |year=2009 |title=Soy Food Consumption and Risk of Prostate Cancer: A Meta-Analysis of Observational Studies |journal=Nutrition and Cancer |volume=61 |issue=5 |pages=598–606 |pmid=19838933 |doi=10.1080/01635580902825639 |s2cid=19719873}}</ref> [[cervix]],<ref>{{cite journal |last1=Kim |first1=Su-Hyeon |last2=Kim |first2=Su-Hyeong |last3=Kim |first3=Yong-Beom |last4=Jeon |first4=Yong-Tark |last5=Lee |first5=Sang-Chul |last6=Song |first6=Yong-Sang |year=2009 |title=Genistein Inhibits Cell Growth by Modulating Various Mitogen-Activated Protein Kinases and AKT in Cervical Cancer Cells |journal=Annals of the New York Academy of Sciences |volume=1171 |issue=1 |pages=495–500 |pmid=19723095 |bibcode=2009NYASA1171..495K |doi=10.1111/j.1749-6632.2009.04899.x |s2cid=26111697}}</ref> [[brain]],<ref>{{cite journal |last1=Das |first1=Arabinda |last2=Banik |first2=Naren L. |last3=Ray |first3=Swapan K. |year=2009 |title=Flavonoids activated caspases for apoptosis in human glioblastoma T98G and U87MG cells but not in human normal astrocytes |journal=Cancer |volume=116 |issue=1 |pages=164–76 |pmid=19894226 |pmc=3159962 |doi=10.1002/cncr.24699}}</ref> [[breast]]<ref name=pmid11305594/><ref>{{cite journal |last1=Sakamoto |first1=Takako |last2=Horiguchi |first2=Hyogo |last3=Oguma |first3=Etsuko |last4=Kayama |first4=Fujio |year=2010 |title=Effects of diverse dietary phytoestrogens on cell growth, cell cycle and apoptosis in estrogen-receptor-positive breast cancer cells |journal=The Journal of Nutritional Biochemistry |volume=21 |issue=9 |pages=856–64 |pmid=19800779 |doi=10.1016/j.jnutbio.2009.06.010}}</ref><ref>{{cite journal |last1=de Lemos |first1=Mário L |year=2001 |title=Effects of Soy Phytoestrogens Genistein and Daidzein on Breast Cancer Growth |journal=The Annals of Pharmacotherapy |volume=35 |issue=9 |pages=1118–21 |pmid=11573864 |doi=10.1345/aph.10257 |s2cid=208876381}}</ref> and [[Colon (anatomy)|colon]].<ref name="Nakamura-2009"/> It has also been shown that genistein makes some cells more sensitive to radio-therapy.<!--Laboratory studies using animal models have shown that both soy and isoflavones can be protective against cancer when given during early life but can stimulate response to cancer-causing chemicals when given during fetal development or when circulating levels of estrogen are low ([[menopause]]).{{Citation needed|date=March 2008}} If you can't find it, and you know what you're doing, then snip this. The part about menopausal treatment is said elsewhere.-->;<ref name="pmid17261753">{{cite journal |last1=de Assis |first1=Sonia |last2=Hilakivi-Clarke |first2=Leena |year=2006 |title=Timing of Dietary Estrogenic Exposures and Breast Cancer Risk |journal=Annals of the New York Academy of Sciences |volume=1089 |issue=1 |pages=14–35 |pmid=17261753 |bibcode=2006NYASA1089...14D |doi=10.1196/annals.1386.039 |s2cid=22170442}}</ref> although, timing of [[phytoestrogen]] use is also important.<ref name="pmid17261753"/>
Genistein and other [[isoflavones]] have been found to have antiangiogenic effects (blocking formation of new [[blood vessels]]), and may block the uncontrolled cell growth associated with [[cancer]], most likely by inhibiting the activity of substances in the body that regulate [[cell division]] and cell survival ([[growth factors]]). Various studies have found moderate doses of genistein to have inhibitory effects on [[cancer]]s of the [[prostate]],<ref name="Keiko MORITO, Toshiharu HIROSE, Junei KINJO, Tomoki HIRAKAWA, Masafumi OKAWA, Toshihiro NOHARA, Sumito OGAWA, Satoshi INOUE, Masami MURAMATSU, and Yukito MASAMUNE">{{cite web |url=http://www.jstage.jst.go.jp/article/bpb/24/4/351/_pdf |title=Interaction of Phytoestrogens with Estrogen Receptors a and b |author=Keiko MORITO, Toshiharu HIROSE, Junei KINJO, Tomoki HIRAKAWA, Masafumi OKAWA,
Toshihiro NOHARA, Sumito OGAWA, Satoshi INOUE, Masami MURAMATSU, and Yukito MASAMUNE |publisher=Biol. Pharm. Bull. 24(4) 351—356 |date=April 2001}}</ref><ref>{{cite journal |author=Hwang YW, Kim SY, Jee SH, Kim YN, Nam CM |title=Soy food consumption and risk of prostate cancer: a meta-analysis of observational studies. |journal=Nutr Cancer |volume=61 |issue=5 |pages=598–606 |year=2009 |pmid=19838933 |doi=10.1080/01635580902825639
}}</ref> [[cervical]],<ref>{{cite journal |author=Kim SH, Kim SH, Kim YB, Jeon YT, Lee SC, Song YS |title=Genistein inhibits cell growth by modulating various mitogen-activated protein kinases and AKT in cervical cancer cells. |journal=Ann N Y Acad Sci. |volume=1171 |pages=495–500 |year=2009 |pmid=19723095 |doi=10.1111/j.1749-6632.2009.04899.x
}}</ref> [[brain]],<ref>{{cite journal |author= Arabina DAS, Naren L. BANIK, and Swapan K. RAY |title=Flavoniods Activated Caspases for Apoptosis in Human Glioblastoma T98G and U87MG Cells But Not in Human Normal Astrocytes |journal=Cancer |year=2009 |pmid=19894226 |volume= 116 |issue= 1 |pages= 164–76 |doi= 10.1002/cncr.24699}}</ref> [[breast]],<ref name="Keiko MORITO, Toshiharu HIROSE, Junei KINJO, Tomoki HIRAKAWA, Masafumi OKAWA, Toshihiro NOHARA, Sumito OGAWA, Satoshi INOUE, Masami MURAMATSU, and Yukito MASAMUNE"/><ref>{{cite journal |author=Sakamoto T, Horiguchi H, Oguma E, Kayama F |title=Effects of diverse dietary phytoestrogens on cell growth, cell cycle and apoptosis in estrogen-receptor-positive breast cancer cells. |journal=J Nutr Biochem |volume=21 |issue=9 |pages=856–64 |year=2009 |pmid=19800779 |doi=10.1016/j.jnutbio.2009.06.010
}}</ref><ref>{{cite journal |author=de Lemos ML |title=Effects of soy phytoestrogens genistein and daidzein on breast cancer growth |journal=Ann Pharmacother |volume=35 |issue=9 |pages=1118–21 |year=2001 |pmid=11573864 |doi=10.1345/aph.10257
}}</ref> and [[Colon (anatomy)|colon]].<ref>{{cite journal |author=Nakamura Y, Yogosawa S, Izutani Y, Watanabe H, Otsuji E, Sakai T. |title=A combination of indol-3-carbinol and genistein synergistically induces apoptosis in human colon cancer HT-29 cells by inhibiting Akt phosphorylation and progression of autophagy |journal=Mol Cancer. |volume=8 |pages=100 |year=2009 |pmid=19909554 |doi=10.1186/1476-4598-8-100 |pmc=2784428 |url=http://www.molecular-cancer.com/content/8//100}}</ref> Additionally it has been shown that genistein makes some cells more sensitive to radio-therapy<!--Laboratory studies using animal models have shown that both soy and isoflavones can be protective against cancer when given during early life but can stimulate response to cancer-causing chemicals when given during fetal development or when circulating levels of estrogen are low ([[menopause]]).{{Fact|date=March 2008}} If you can't find it, and you know what you're doing, then snip this. The part about menopausal treatment is said elsewhere.-->;<ref name="pmid17261753">{{cite journal
| author = De Assis S, Hilakivi-Clarke L
| title = Timing of dietary estrogenic exposures and breast cancer risk
| quote = The viability was decreased by co-treatment with genistein and irradiation compared with irradiation treatment alone.
| journal = Ann. N. Y. Acad. Sci.
| volume = 1089
| pages = 14–35
| year = 2006
| month = November
| pmid = 17261753
| doi = 10.1196/annals.1386.039
}}</ref> although, timing of [[phytoestrogen]] use is also important.<ref name="pmid17261753">{{cite journal
| author = De Assis S, Hilakivi-Clarke L
| title = Timing of dietary estrogenic exposures and breast cancer risk
| quote = Thus, dietary exposures during pregnancy and puberty may play an important role in determining later risk by inducing epigenetic changes that modify vulnerability to breast cancer.
| journal = Ann. N. Y. Acad. Sci.
| volume = 1089
| pages = 14–35
| year = 2006
| month = November
| pmid = 17261753
| doi = 10.1196/annals.1386.039
}}</ref>


Genistein's chief method of activity is as a [[tyrosine kinase inhibitor]]. Tyrosine kinases are less widespread than their ser/thr counterparts but implicated in almost all cell growth and proliferation signal cascades. Inhibition of [[Type II topoisomerase|DNA topoisomerase II]] also plays an important role in the cytotoxic activity of genistein.<ref>{{cite journal|author= Markovits J, Linassier C, Fossé P, Couprie J, Pierre J, Jacquemin-Sablon A, Saucier JM, Le Pecq JB, Larsen AK |title=Inhibitory effects of the tyrosine kinase inhibitor genistein on mammalian DNA topoisomerase II |journal= Cancer Res. |volume=49|issue=18|pages=5111–7|year=1989|pmid=2548712}}</ref><ref>{{cite journal|author= López-Lazaro M, Willmore E, Austin CA.|title=Cells lacking DNA topoisomerase II beta are resistant to genistein |journal= J Nat Prod.|volume=70|issue=5|pages=763–7|year=2007|pmid=17411092|doi= 10.1021/np060609z}}</ref> Genistein has been used to selectively target pre B-cells via [[antibody-drug conjugate|conjugation with an anti-CD19 antibody]].<ref>{{cite book |url=http://books.google.com/?id=emGC_fRJH_IC&pg=PA457&lpg=PA457&dq=Genistein+pre+B-cells+conjugation+antibody#v=onepage&q&f=false |title=Principles of Cancer Biotherapy. |author=Robert Oldham, Robert O. Dillman. |page=457 |isbn=9789048122776 |date=2009-07 }}</ref>
Genistein's chief method of activity is as a [[tyrosine kinase inhibitor]]. Tyrosine kinases are less widespread than their ser/thr counterparts but implicated in almost all cell growth and proliferation signal cascades. Inhibition of [[Type II topoisomerase|DNA topoisomerase II]] also plays an important role in the cytotoxic activity of genistein.<ref name="Markovits-1989"/><ref>{{cite journal |doi=10.1021/np060609z |pmid=17411092 |title=Cells Lacking DNA Topoisomerase IIβ are Resistant to Genistein |journal=Journal of Natural Products |volume=70 |issue=5 |pages=763–7 |year=2007 |last1=López-Lázaro |first1=Miguel |last2=Willmore |first2=Elaine |last3=Austin |first3=Caroline A.}}</ref> The observation that transition of normal lymphocytes from quiescence (G<sub>0</sub>) to the G<sub>1</sub> phase of the cell cycle is particularly sensitive to genistein prompted the authors to suggest that this [[isoflavone]] may be potential [[immunosuppressant]].<ref>{{cite journal |last1=Traganos |first1=F |last2=Ardelt |first2=B |last3=Halko |first3=N |last4=Bruno |first4=S |last5=Darzynkiewicz |first5=Z |year=1992 |title=Effects of genistein on the growth and cell cycle progression of normal human lymphocytes and human leukemic MOLT-4 and HL-60 cells |journal=Cancer Res. |volume=52 |issue=22 |pages=6200–8 |pmid=1330289}}</ref> Genistein has been used to selectively target pre B-cells via [[antibody-drug conjugate|conjugation with an anti-CD19 antibody]].<ref>{{cite book |last1=Safa |first1=Malek |last2=Foon |first2=Kenneth A. |last3=Oldham |first3=Robert K. |chapter=Drug Immunoconjugates |chapter-url=https://books.google.com/books?id=emGC_fRJH_IC&pg=PA450 |editor1-first=Robert K. |editor1-last=Oldham |editor2-first=Robert O. |editor2-last=Dillman |title=Principles of Cancer Biotherapy |edition=5th |pages=451–62 |year=2009 |doi=10.1007/978-90-481-2289-9_12 |isbn=978-90-481-2277-6}}</ref>


Studies on rodents have found genistein to be useful in treatment [[leukemia]] and that it can be used in combination with certain other antileukemic drugs to improve their efficacy.<ref>{{cite journal |author=Raynal NJ, Charbonneau M, Momparler LF, Momparler RL |title=Synergistic effect of 5-Aza-2'-deoxycytidine and genistein in combination against leukemia |journal=Oncol Res |volume=17 |issue=5 |pages=223–30 |year=2008 |pmid=18980019 |doi=10.3727/096504008786111356}}</ref>
Studies on rodents have found genistein to be useful in the treatment of [[leukemia]], and that it can be used in combination with certain other antileukemic drugs to improve their efficacy.<ref>{{cite journal |last1=Raynal |first1=Noël J. M. |last2=Charbonneau |first2=Michel |last3=Momparler |first3=Louise F. |last4=Momparler |first4=Richard L. |year=2008 |title=Synergistic Effect of 5-Aza-2′-Deoxycytidine and Genistein in Combination Against Leukemia |journal=Oncology Research Featuring Preclinical and Clinical Cancer Therapeutics |volume=17 |issue=5 |pages=223–30 |pmid=18980019 |doi=10.3727/096504008786111356|doi-access=free }}</ref>


===Estrogen receptor - more cancer links===
===Estrogen receptor&nbsp;— more cancer links===
Due to its structure similarity to 17β-estradiol ([[estrogen]]), genistein can compete with it and bind to [[estrogen receptor]]s. However, genistein shows much higher affinity toward [[Estrogen receptor beta|estrogen receptor β]] than toward [[Estrogen receptor alpha|estrogen receptor α]].<ref>{{cite journal |doi=10.1210/en.139.10.4252 |author=Kuiper GG, Lemmen JG, Carlsson B, Corton JC, Safe SH, van der Saag PT, van der Burg B, Gustafsson JA |title=Interaction of estrogenic chemicals and phytoestrogens with estrogen receptor beta. |journal=Endocrinology |volume=139 |issue=10 |pages=4252–63 |year=1998 |pmid=9751507
Due to its structure similarity to 17β-estradiol ([[estrogen]]), genistein can compete with it and bind to [[estrogen receptor]]s. However, genistein shows much higher affinity toward [[Estrogen receptor beta|estrogen receptor β]] than toward [[Estrogen receptor alpha|estrogen receptor α]].<ref>{{cite journal |last1=Kuiper |first1=George G. J. M. |last2=Lemmen |first2=Josephine G. |last3=Carlsson |first3=Bo |last4=Corton |first4=J. Christopher |last5=Safe |first5=Stephen H. |last6=van der Saag |first6=Paul T. |last7=van der Burg |first7=Bart |last8=Gustafsson |first8=Jan-Åke |year=1998 |title=Interaction of Estrogenic Chemicals and Phytoestrogens with Estrogen Receptor β |journal=Endocrinology |volume=139 |issue=10 |pages=4252–63 |pmid=9751507 |doi=10.1210/endo.139.10.6216 |doi-access=free}}</ref>

|url=http://endo.endojournals.org/cgi/content/full/139/10/4252 |accessdate=2010-08-23}}
Data from ''[[in vitro]]'' and ''[[in vivo]]'' research confirms that genistein can increase rate of growth of some [[estrogen receptor|ER]] expressing breast cancers. Genistein was found to increase the rate of proliferation of estrogen-dependent breast cancer when not cotreated with an estrogen antagonist.<ref name="pmid16537557">{{cite journal |last1=Ju |first1=Young H. |last2=Allred |first2=Kimberly F. |last3=Allred |first3=Clinton D. |last4=Helferich |first4=William G. |year=2006 |title=Genistein stimulates growth of human breast cancer cells in a novel, postmenopausal animal model, with low plasma estradiol concentrations |journal=Carcinogenesis |volume=27 |issue=6 |pages=1292–9 |pmid=16537557 |doi=10.1093/carcin/bgi370 |doi-access=free}}</ref><ref name="pmid15126563">{{cite journal |last1=Chen |first1=Wen-Fang |last2=Wong |first2=Man-Sau |year=2004 |title=Genistein Enhances Insulin-Like Growth Factor Signaling Pathway in Human Breast Cancer (MCF-7) Cells |journal=The Journal of Clinical Endocrinology & Metabolism |volume=89 |issue=5 |pages=2351–9 |pmid=15126563 |doi=10.1210/jc.2003-032065 |doi-access=free}}</ref><ref name="Yang-2010">{{cite journal |last1=Yang |first1=Xiaohe |last2=Yang |first2=Shihe |last3=McKimmey |first3=Christine |last4=Liu |first4=Bolin |last5=Edgerton |first5=Susan M. |last6=Bales |first6=Wesley |last7=Archer |first7=Linda T. |last8=Thor |first8=Ann D. |year=2010 |title=Genistein induces enhanced growth promotion in ER-positive/erbB-2-overexpressing breast cancers by ER-erbB-2 cross talk and p27/kip1 downregulation |journal=Carcinogenesis |volume=31 |issue=4 |pages=695–702 |pmid=20067990 |doi=10.1093/carcin/bgq007 |doi-access=free}}</ref> It was also found to decrease efficiency of [[tamoxifen]] and [[letrozole]] - drugs commonly used in breast cancer therapy.<ref name="Helferich-2008">{{cite journal |last1=Helferich |first1=W. G. |last2=Andrade |first2=J. E. |last3=Hoagland |first3=M. S. |year=2008 |title=Phytoestrogens and breast cancer: A complex story |journal=Inflammopharmacology |volume=16 |issue=5 |pages=219–26 |pmid=18815740 |doi=10.1007/s10787-008-8020-0 |s2cid=11659490}}</ref><ref name="Tonetti-2007">{{cite journal |last1=Tonetti |first1=Debra A. |last2=Zhang |first2=Yiyun |last3=Zhao |first3=Huiping |last4=Lim |first4=Sok-Bee |last5=Constantinou |first5=Andreas I. |year=2007 |title=The Effect of the Phytoestrogens Genistein, Daidzein, and Equol on the Growth of Tamoxifen-Resistant T47D/PKCα |journal=Nutrition and Cancer |volume=58 |issue=2 |pages=222–9 |pmid=17640169 |doi=10.1080/01635580701328545 |s2cid=10831895}}</ref> Genistein was found to inhibit immune response towards cancer cells allowing their survival.<ref name="Jiang-2008">{{cite journal |last1=Jiang |first1=Xinguo |last2=Patterson |first2=Nicole M. |last3=Ling |first3=Yan |last4=Xie |first4=Jianwei |last5=Helferich |first5=William G. |last6=Shapiro |first6=David J. |title=Low Concentrations of the Soy Phytoestrogen Genistein Induce Proteinase Inhibitor 9 and Block Killing of Breast Cancer Cells by Immune Cells |journal=Endocrinology |volume=149 |issue=11 |pages=5366–73 |pmid=18669594 |year=2008 |doi=10.1210/en.2008-0857 |pmc=2584580}}</ref>
</ref><br /> Data from ''[[in vitro]]'' and ''[[in vivo]]'' research confirms that genistein can increase rate of growth of some [[estrogen receptor|ER]] expressing breast cancers. Genistein was found to increase the rate of proliferation of estrogen-dependent breast cancer when not cotreated with an estrogen antagonist.<ref name="pmid16537557">{{cite journal
| author = Ju YH, Allred KF, Allred CD, Helferich WG
| title = Genistein stimulates growth of human breast cancer cells in a novel, postmenopausal animal model, with low plasma estradiol concentrations
| quote = Results from this study suggest that consumption of products containing GEN may not be safe for postmenopausal women with estrogen-dependent breast cancer.
| journal = Carcinogenesis
| volume = 27
| issue = 6
| pages = 1292–9
| year = 2006
| month = June
| pmid = 16537557
| doi = 10.1093/carcin/bgi370
}}</ref><ref name="pmid15126563">{{cite journal
| author = Chen WF, Wong MS
| title = Genistein enhances insulin-like growth factor signaling pathway in human breast cancer (MCF-7) cells
| quote = These effects could be completely abolished by cotreatment of MCF-7 cells with estrogen antagonist ICI 182780 (1 microM) and tamoxifen (0.1 microM).
| journal = J. Clin. Endocrinol. Metab.
| volume = 89
| issue = 5
| pages = 2351–9
| year = 2004
| month = May
| pmid = 15126563
| doi = 10.1210/jc.2003-032065
| url = http://jcem.endojournals.org/cgi/pmidlookup?view=long&pmid=15126563
}}</ref><ref name="Yang-2010">{{Cite journal | last1 = Yang | first1 = X. | last2 = Yang | first2 = S. | last3 = McKimmey | first3 = C. | last4 = Liu | first4 = B. | last5 = Edgerton | first5 = SM. | last6 = Bales | first6 = W. | last7 = Archer | first7 = LT. | last8 = Thor | first8 = AD. | title = Genistein induces enhanced growth promotion in ER-positive/erbB-2-overexpressing breast cancers by ER-erbB-2 cross talk and p27/kip1 downregulation. | journal = Carcinogenesis | volume = 31 | issue = 4 | pages = 695–702 | month = Apr | year = 2010 | doi = 10.1093/carcin/bgq007 | PMID = 20067990 }}</ref> It was also found to decrease efficiency of [[tamoxifen]] and [[letrozole]] - drugs commonly used in breast cancer therapy.<ref name="Helferich-2008">{{Cite journal | last1 = Helferich | first1 = WG. | last2 = Andrade | first2 = JE. | last3 = Hoagland | first3 = MS. | title = Phytoestrogens and breast cancer: a complex story. | journal = Inflammopharmacology | volume = 16 | issue = 5 | pages = 219–26 | month = Oct | year = 2008 | doi = 10.1007/s10787-008-8020-0 | PMID = 18815740 }}</ref><ref name="Tonetti-2007">{{Cite journal | last1 = Tonetti | first1 = DA. | last2 = Zhang | first2 = Y. | last3 = Zhao | first3 = H. | last4 = Lim | first4 = SB. | last5 = Constantinou | first5 = AI. | title = The effect of the phytoestrogens genistein, daidzein, and equol on the growth of tamoxifen-resistant T47D/PKC alpha. | journal = Nutr Cancer | volume = 58 | issue = 2 | pages = 222–9 | month = | year = 2007 | doi = 10.1080/01635580701328545 | PMID = 17640169 }}</ref> Genistein was found to inhibit immune response towards cancer cells allowing their survival.<ref name="Jiang-2008">{{Cite journal | last1 = Jiang | first1 = X. | last2 = Patterson | first2 = NM. | last3 = Ling | first3 = Y. | last4 = Xie | first4 = J. | last5 = Helferich | first5 = WG. | last6 = Shapiro | first6 = DJ. | title = Low concentrations of the soy phytoestrogen genistein induce proteinase inhibitor 9 and block killing of breast cancer cells by immune cells. | journal = Endocrinology | volume = 149 | issue = 11 | pages = 5366–73 | month = Nov | year = 2008 | doi = 10.1210/en.2008-0857 | PMID = 18669594 }}</ref>


===Effects in males===
===Effects in males===
Isoflavones can act like [[estrogen]], stimulating development and maintenance of female characteristics, or they can block cells from using cousins of estrogen. In vitro studies have shown genistein to induce [[apoptosis]] of testicular cells at certain levels, thus raising concerns about effects it could have on male fertility;<ref>{{cite journal |author=Kumi-Diaka J, Rodriguez R, Goudaze G |title=Influence of genistein (4',5,7-trihydroxyisoflavone) on the growth and proliferation of testicular cell lines |journal=Biol. Cell |volume=90 |issue=4 |pages=349–54 |year=1998 |pmid=9800352
Isoflavones can act like [[estrogen]], stimulating development and maintenance of female characteristics, or they can block cells from using cousins of estrogen. In vitro studies have shown genistein to induce [[apoptosis]] of testicular cells at certain levels, thus raising concerns about effects it could have on male fertility;<ref>{{cite journal |last1=Kumi-Diaka |first1=James |last2=Rodriguez |first2=Rosanna |last3=Goudaze |first3=Gould |year=1998 |title=Influence of genistein (4′,5,7-trihydroxyisoflavone) on the growth and proliferation of testicular cell lines |journal=Biology of the Cell |volume=90 |issue=4 |pages=349–54 |pmid=9800352 |doi=10.1016/S0248-4900(98)80015-4}}</ref> however, one study found that isoflavones had "no observable effect on endocrine measurements, testicular volume or semen parameters over the study period." in healthy males given isoflavone supplements daily over a 2-month period.<ref>{{cite journal |last1=Mitchell |first1=Julie H. |last2=Cawood |first2=Elizabeth |last3=Kinniburgh |first3=David |last4=Provan |first4=Anne |last5=Collins |first5=Andrew R. |last6=Irvine |first6=D. Stewart |year=2001 |title=Effect of a phytoestrogen food supplement on reproductive health in normal males |journal=Clinical Science |volume=100 |issue=6 |pages=613–8 |pmid=11352776 |doi=10.1042/CS20000212}}</ref>
|quote=Genistein-induced apoptosis identifies genistein as a potential diagnostic and therapeutic tool in testicular pathophysiological research. |doi=10.1016/S0248-4900(98)80015-4
}}</ref> however, a recent study found that isoflavones had "no observable effect on endocrine measurements, testicular volume or semen parameters over the study period." in healthy males given isoflavone supplements daily over a 2 month period.<ref>{{cite journal |author=Mitchell JH, Cawood E, Kinniburgh D, Provan A, Collins AR, Irvine DS |title=Effect of a phytoestrogen food supplement on reproductive health in normal males. |journal=Clin Sci (Lond) |volume=100 |issue=6 |pages=613–8 |year=2001 |pmid=11352776 |doi=10.1042/CS20000212
}}</ref>


===Carcinogenic and toxic potential===
===Sanfilippo syndrome treatment===
Genistein was, among other [[flavonoid]]s, found to be a strong [[topoisomerase inhibitor]], similarly to some chemotherapeutic anticancer drugs ex. [[etoposide]] and [[doxorubicin]].<ref name="pmid17458941"/><ref name="pmid15901918">{{cite journal |last1=Lutz |first1=Werner K. |last2=Tiedge |first2=Oliver |last3=Lutz |first3=Roman W. |last4=Stopper |first4=Helga |year=2005 |title=Different Types of Combination Effects for the Induction of Micronuclei in Mouse Lymphoma Cells by Binary Mixtures of the Genotoxic Agents MMS, MNU, and Genistein |journal=Toxicological Sciences |volume=86 |issue=2 |pages=318–23 |pmid=15901918 |doi=10.1093/toxsci/kfi200 |doi-access=free|hdl=20.500.11850/32271 |hdl-access=free }}</ref> In high doses it was found to be strongly toxic to normal cells.<ref name="Jin-2007"/> This effect may be responsible for both anticarcinogenic and carcinogenic potential of the substance.<ref name="López-Lazaro-2007"/><ref name="pmid18357397">{{cite journal |last1=Schmidt |first1=Friederike |last2=Knobbe |first2=Christiane |last3=Frank |first3=Brigitte |last4=Wolburg |first4=Hartwig |last5=Weller |first5=Michael |year=2008 |title=The topoisomerase II inhibitor, genistein, induces G2/M arrest and apoptosis in human malignant glioma cell lines |journal=Oncology Reports |volume=19 |issue=4 |pages=1061–6 |pmid=18357397 |doi=10.3892/or.19.4.1061 |doi-access=free}}</ref> It was found to deteriorate DNA of cultured blood stem cells, which may lead to leukemia.<ref name="pmid17468513">{{cite journal |last1=van Waalwijk van Doorn-Khosrovani |first1=Sahar Barjesteh |last2=Janssen |first2=Jannie |last3=Maas |first3=Lou M. |last4=Godschalk |first4=Roger W. L. |last5=Nijhuis |first5=Jan G. |last6=van Schooten |first6=Frederik J. |year=2007 |title=Dietary flavonoids induce MLL translocations in primary human CD34+ cells |journal=Carcinogenesis |volume=28 |issue=8 |pages=1703–9 |pmid=17468513 |doi=10.1093/carcin/bgm102 |doi-access=free}}</ref> Genistein among other [[flavonoid]]s is suspected to increase risk of infant leukemia when consumed during pregnancy.<ref name="pmid15767345">{{cite journal |last1=Spector |first1=Logan G. |last2=Xie |first2=Yang |last3=Robison |first3=Leslie L. |last4=Heerema |first4=Nyla A. |last5=Hilden |first5=Joanne M. |last6=Lange |first6=Beverly |last7=Felix |first7=Carolyn A. |last8=Davies |first8=Stella M. |last9=Slavin |first9=Joanne |last10=Potter |first10=John D. |last11=Blair |first11=Cindy K. |last12=Reaman |first12=Gregory H. |last13=Ross |first13=Julie A. |year=2005 |title=Maternal Diet and Infant Leukemia: The DNA Topoisomerase II Inhibitor Hypothesis: A Report from the Children's Oncology Group |journal=Cancer Epidemiology, Biomarkers & Prevention |volume=14 |issue=3 |pages=651–5 |pmid=15767345 |doi=10.1158/1055-9965.EPI-04-0602 |doi-access=free}}</ref><ref name="pmid20638367">{{cite journal |last1=Azarova |first1=Anna M. |last2=Lin |first2=Ren-Kuo |last3=Tsai |first3=Yuan-Chin |last4=Liu |first4=Leroy F. |author4-link=Leroy Liu |last5=Lin |first5=Chao-Po |last6=Lyu |first6=Yi Lisa |year=2010 |title=Genistein induces topoisomerase IIbeta- and proteasome-mediated DNA sequence rearrangements: Implications in infant leukemia |journal=Biochemical and Biophysical Research Communications |volume=399 |issue=1 |pages=66–71 |pmid=20638367 |pmc=3376163 |doi=10.1016/j.bbrc.2010.07.043}}</ref>
The group of Grzegorz Węgrzyn,<ref>www.bgo.ug.gda.pl/kbm/dmb/staff/gw.htm</ref> from the Department of Molecular Biology of University of Gdansk, Poland, found that genistein decreases pathological cumulation of [[glycosaminoglycan]]s in [[Sanfilippo syndrome]]. ''In vitro'', animal studies and clinical experiments suggest that the symptoms of the disease may be alleviated by adequate dose of genistein.<ref name="Piotrowska-2006">{{Cite journal | last1 = Piotrowska | first1 = E. | last2 = Jakóbkiewicz-Banecka | first2 = J. | last3 = Barańska | first3 = S. | last4 = Tylki-Szymańska | first4 = A. | last5 = Czartoryska | first5 = B. | last6 = Wegrzyn | first6 = A. | last7 = Wegrzyn | first7 = G. | title = Genistein-mediated inhibition of glycosaminoglycan synthesis as a basis for gene expression-targeted isoflavone therapy for mucopolysaccharidoses. | journal = Eur J Hum Genet | volume = 14 | issue = 7 | pages = 846–52 | month = Jul | year = 2006 | doi = 10.1038/sj.ejhg.5201623 | PMID = 16670689 }}</ref> Genistein was found to also possess toxic properties toward brain cells.<ref name="Jin-2007">{{Cite journal | last1 = Jin | first1 = Y. | last2 = Wu | first2 = H. | last3 = Cohen | first3 = EM. | last4 = Wei | first4 = J. | last5 = Jin | first5 = H. | last6 = Prentice | first6 = H. | last7 = Wu | first7 = JY. | title = Genistein and daidzein induce neurotoxicity at high concentrations in primary rat neuronal cultures. | journal = J Biomed Sci | volume = 14 | issue = 2 | pages = 275–84 | month = Mar | year = 2007 | doi = 10.1007/s11373-006-9142-2 | PMID = 17245525 }}</ref> As one of the pathways stimulated by genistein is [[autophagy]] it may explain the observed efficiency of the substance, as [[autophagy]] is significantly impaired in the disease.<ref name="Ballabio-2009">{{Cite journal | last1 = Ballabio | first1 = A. | title = Disease pathogenesis explained by basic science: lysosomal storage diseases as autophagocytic disorders. | journal = Int J Clin Pharmacol Ther | volume = 47 Suppl 1 | issue = | pages = S34-8 | month = | year = 2009 | doi = | PMID = 20040309 }}</ref><ref name="Settembre-2008">{{Cite journal | last1 = Settembre | first1 = C. | last2 = Fraldi | first2 = A. | last3 = Jahreiss | first3 = L. | last4 = Spampanato | first4 = C. | last5 = Venturi | first5 = C. | last6 = Medina | first6 = D. | last7 = de Pablo | first7 = R. | last8 = Tacchetti | first8 = C. | last9 = Rubinsztein | first9 = DC. | title = A block of autophagy in lysosomal storage disorders. | journal = Hum Mol Genet | volume = 17 | issue = 1 | pages = 119–29 | month = Jan | year = 2008 | doi = 10.1093/hmg/ddm289 | PMID = 17913701 }}</ref> Anyway, other autophagy stimulating substances are already known, having no toxic/[[mutagen]]ic -[[topoisomerase]] inhibitory or hormonal properties, ex. [[rapamycin]].


===Sanfilippo syndrome treatment===
==Related compound==
Genistein decreases pathological accumulation of [[glycosaminoglycan]]s in [[Sanfilippo syndrome]]. ''In vitro'' animal studies and clinical experiments suggest that the symptoms of the disease may be alleviated by adequate dose of genistein.<ref name="Piotrowska-2006">{{cite journal |last1=Piotrowska |first1=Ewa |last2=Jakóbkiewicz-Banecka |first2=Joanna |last3=Barańska |first3=Sylwia |last4=Tylki-Szymańska |first4=Anna |last5=Czartoryska |first5=Barbara |last6=Węgrzyn |first6=Alicja |last7=Węgrzyn |first7=Grzegorz |year=2006 |title=Genistein-mediated inhibition of glycosaminoglycan synthesis as a basis for gene expression-targeted isoflavone therapy for mucopolysaccharidoses |journal=European Journal of Human Genetics |volume=14 |issue=7 |pages=846–52 |pmid=16670689 |doi=10.1038/sj.ejhg.5201623 |doi-access=free}}</ref> Genistein was found to also possess toxic properties toward brain cells.<ref name="Jin-2007">{{cite journal |last1=Jin |first1=Ying |last2=Wu |first2=Heng |last3=Cohen |first3=Eric M. |last4=Wei |first4=Jianning |last5=Jin |first5=Hong |last6=Prentice |first6=Howard |last7=Wu |first7=Jang-Yen |year=2007 |title=Genistein and daidzein induce neurotoxicity at high concentrations in primary rat neuronal cultures |journal=Journal of Biomedical Science |volume=14 |issue=2 |pages=275–84 |pmid=17245525 |doi=10.1007/s11373-006-9142-2}}</ref> Among many pathways stimulated by genistein, [[autophagy]] may explain the observed efficiency of the substance as [[autophagy]] is significantly impaired in the disease.<ref name="Ballabio-2009">{{cite journal |last1=Ballabio |first1=A. |year=2009 |title=Disease pathogenesis explained by basic science: Lysosomal storage diseases as autophagocytic disorders |journal=International Journal of Clinical Pharmacology and Therapeutics |volume=47 |issue=Suppl 1 |pages=S34–8 |pmid=20040309 |doi=10.5414/cpp47034}}</ref><ref name="Settembre-2008">{{cite journal |last1=Settembre |first1=Carmine |last2=Fraldi |first2=Alessandro |last3=Jahreiss |first3=Luca |last4=Spampanato |first4=Carmine |last5=Venturi |first5=Consuelo |last6=Medina |first6=Diego |last7=de Pablo |first7=Raquel |last8=Tacchetti |first8=Carlo |last9=Rubinsztein |first9=David C. |last10=Ballabio |first10=Andrea |year=2007 |title=A block of autophagy in lysosomal storage disorders |journal=Human Molecular Genetics |volume=17 |issue=1 |pages=119–29 |pmid=17913701 |doi=10.1093/hmg/ddm289 |doi-access=free}}</ref>
===Glycosides===
[[Genistin]] is the 7-O-beta-D-[[glucoside]] of genistein.

===Acetylated compounds===
[[Wighteone]] is the 6-[[isopentenyl]] genistein (6-prenyl-5,7,4'-trihydroxyisoflavone)


===Pharmaceutical derivatives===
=== Cognition ===
A study looking at Italians older than 50 found that those with the highest genistein intake had the lowest odds of cognitive impairment.<ref>{{Cite journal |last1=Giampieri |first1=Francesca |last2=Godos |first2=Justyna |last3=Caruso |first3=Giuseppe |last4=Owczarek |first4=Marcin |last5=Jurek |first5=Joanna |last6=Castellano |first6=Sabrina |last7=Ferri |first7=Raffaele |last8=Caraci |first8=Filippo |last9=Grosso |first9=Giuseppe |date=2022-05-30 |title=Dietary Phytoestrogen Intake and Cognitive Status in Southern Italian Older Adults |journal=Biomolecules |volume=12 |issue=6 |pages=760 |doi=10.3390/biom12060760 |issn=2218-273X |pmid=35740885 |pmc=9221352 |doi-access=free}}</ref>
[[KBU2046]] under investigation for [[prostate cancer]].<ref>{{cite news |url=http://defeatosteosarcoma.org/2010/11/isoflavone-genistein-derived-drug-kbu2046-inhibits-prostate-tumor-metastasis/ |title=Isoflavone-genistein derived drug, KBU2046, inhibits prostate tumor metastasis |date=16 Nov 2010 |author=Bergan at al. }}</ref>


==Related compounds==
==Carcinogenic and toxic potential==
* [[Genistin]] is the 7-O-beta-D-[[glucoside]] of genistein.{{citation needed|date=September 2014}}
* [[Wighteone]] can be described as 6-[[isopentenyl]] genistein
* [[KBU2046]] under investigation for [[prostate cancer]].<ref>{{cite journal |last1=Xu |first1=Li |last2=Farmer |first2=Rebecca |last3=Huang |first3=Xiaoke |last4=Pavese |first4=Janet |last5=Voll |first5=Eric |last6=Irene |first6=Ogden |last7=Biddle |first7=Margaret |last8=Nibbs |first8=Antoinette |last9=Valsecchi |first9=Matias |last10=Scheidt |first10=Karl |last11=Bergan |first11=Raymond |year=2010 |title=Abstract B58: Discovery of a novel drug KBU2046 that inhibits conversion of human prostate cancer to a metastatic phenotype |journal=Cancer Prevention Research |volume=3 |issue=12 Supplement |pages=B58 |doi=10.1158/1940-6207.PREV-10-B58}}</ref><ref>{{cite press release |title=New Drug Stops Spread of Prostate Cancer |publisher=Northwestern University |date=April 3, 2012 |url=http://www.northwestern.edu/newscenter/stories/2012/04/prostate-cancer-new-drug.html |access-date=September 27, 2014}}</ref>
* [[B43-genistein]], an anti-[[CD19]] antibody linked to genistein e.g. for [[leukemia]].<ref>{{cite journal |last1=Chen |first1=Chun-Lin |last2=Levine |first2=Alexandra |last3=Rao |first3=Asha |last4=O'Neill |first4=Karen |last5=Messinger |first5=Yoav |last6=Myers |first6=Dorothea E. |last7=Goldman |first7=Frederick |last8=Hurvitz |first8=Carole |last9=Casper |first9=James T. |last10=Uckun |first10=Fatih M. |year=1999 |title=Clinical Pharmacokinetics of the CD19 Receptor-Directed Tyrosine Kinase Inhibitor B43-Genistein in Patients with B-Lineage Lymphoid Malignancies |journal=The Journal of Clinical Pharmacology |volume=39 |issue=12 |pages=1248–55 |pmid=10586390 |doi=10.1177/00912709922012051 |s2cid=24445516}}</ref>


==See also==
Genistein was, among other [[flavonoid]]s, found to be a strong [[topoisomerase inhibitor]], similarly to some chemotherapeutic anticancer drugs ex. [[etoposide]] and [[doxorubicin]].<ref name="pmid15901918">Lutz WK, Tiedge O, Lutz RW, Stopper H (2005) [http://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&retmode=ref&cmd=prlinks&id=15901918 Different types of combination effects for the induction of micronuclei in mouse lymphoma cells by binary mixtures of the genotoxic agents MMS, MNU, and genistein.] ''Toxicol Sci'' 86 (2):318-23. [http://dx.doi.org/10.1093/toxsci/kfi200 DOI:10.1093/toxsci/kfi200] PMID: [http://pubmed.gov/15901918 15901918]</ref><ref name="pmid17458941">Bandele OJ, Osheroff N (2007) [http://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&retmode=ref&cmd=prlinks&id=17458941 Bioflavonoids as poisons of human topoisomerase II alpha and II beta.] ''Biochemistry'' 46 (20):6097-108. [http://dx.doi.org/10.1021/bi7000664 DOI:10.1021/bi7000664] PMID: [http://pubmed.gov/17458941 17458941]</ref> In high doses it was found to be strongly toxic to normal cells.<ref name="Jin-2007"/> This effect may be responsible for both anticarcinogenic and carcinogenic potential of the substance.<ref name="pmid18357397">Schmidt F, Knobbe CB, Frank B, Wolburg H, Weller M (2008) [http://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&retmode=ref&cmd=prlinks&id=18357397 The topoisomerase II inhibitor, genistein, induces G2/M arrest and apoptosis in human malignant glioma cell lines.] ''Oncol Rep'' 19 (4):1061-6. PMID: [http://pubmed.gov/18357397 18357397]</ref><ref name="pmid17411092">López-Lazaro M, Willmore E, Austin CA (2007) [http://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&retmode=ref&cmd=prlinks&id=17411092 Cells lacking DNA topoisomerase II beta are resistant to genistein.] ''J Nat Prod'' 70 (5):763-7. [http://dx.doi.org/10.1021/np060609z DOI:10.1021/np060609z] PMID: [http://pubmed.gov/17411092 17411092]</ref> It was found to deteriorate DNA of cultured blood stem cells, what may lead to leukemia.<ref name="pmid17468513">Barjesteh van Waalwijk van Doorn-Khosrovani S, Janssen J, Maas LM, Godschalk RW, Nijhuis JG, van Schooten FJ (2007) [http://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&retmode=ref&cmd=prlinks&id=17468513 Dietary flavonoids induce MLL translocations in primary human CD34+ cells.] ''Carcinogenesis'' 28 (8):1703-9. [http://dx.doi.org/10.1093/carcin/bgm102 DOI:10.1093/carcin/bgm102] PMID: [http://pubmed.gov/17468513 17468513]</ref> Genistein among other [[flavonoid]]s is suspected to increase risk of infant leukemia.<ref name="pmid15767345">{{cite journal| author=Spector LG, Xie Y, Robison LL, Heerema NA, Hilden JM, Lange B et al.| title=Maternal diet and infant leukemia: the DNA topoisomerase II inhibitor hypothesis: a report from the children's oncology group. | journal=Cancer Epidemiol Biomarkers Prev | year= 2005 | volume= 14 | issue= 3 | pages= 651–5 | pmid=15767345 | doi=10.1158/1055-9965.EPI-04-0602 }}</ref><ref name="pmid20638367">Azarova AM, Lin RK, Tsai YC, Liu LF, Lin CP, Lyu YL (2010) [http://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&retmode=ref&cmd=prlinks&id=20638367 Genistein induces topoisomerase IIbeta- and proteasome-mediated DNA sequence rearrangements: Implications in infant leukemia.] ''Biochem Biophys Res Commun'' 399 (1):66-71. [http://dx.doi.org/10.1016/j.bbrc.2010.07.043 DOI:10.1016/j.bbrc.2010.07.043] PMID: [http://pubmed.gov/20638367 20638367]</ref>
* [[(S)-Equol]]
* [[Liquiritigenin]]
* [[Menerba]]


==References==
==References==
{{Reflist|2}}
{{Reflist}}


==External links==
{{Isoflavone}}
{{Commons category}}
{{Adrenergics}}
* [https://pubchem.ncbi.nlm.nih.gov/summary/summary.cgi?cid=5280961 Compound Summary at NCBI PubChem]
{{Dopaminergics}}
* [http://www.zerobreastcancer.org/research/bcerc_factsheets_phytoestrogen_genistein.pdf Fact Sheet at Zerobreastcancer] {{Webarchive|url=https://web.archive.org/web/20210421133348/https://www.zerobreastcancer.org/research/bcerc_factsheets_phytoestrogen_genistein.pdf |date=2021-04-21 }}
* [http://www.phytochemicals.info/phytochemicals/genistein.php Information at Phytochemicals]
* [https://web.archive.org/web/20140806174624/http://www.wikigenes.org/e/chem/e/5280961.html Chemical Compound Review at Wikigenes]
* [https://link.springer.com/search?query=Genistein Description at Springer Link]
* [http://www.cancer.gov/drugdictionary?cdrid=43214 Description at NCI Drug Dictionary]


{{Phytoestrogens}}
{{Isoflavones}}
{{Navboxes
| title = [[Pharmacodynamics]]
| titlestyle = background:#ccccff
| list1 =
{{Cannabinoid receptor modulators}}
{{Estrogen receptor modulators}}
{{Estrogen-related receptor modulators}}
{{Glycine receptor modulators}}
{{Monoamine metabolism modulators}}
{{PPAR modulators}}
{{Thyroid hormone receptor modulators}}
}}

[[Category:3α-Hydroxysteroid dehydrogenase inhibitors]]
[[Category:21-Hydroxylase inhibitors]]
[[Category:Dietary supplements]]
[[Category:Dietary supplements]]
[[Category:Nutrients]]
[[Category:Flavonoid antioxidants]]
[[Category:GPER agonists]]
[[Category:Isoflavones]]
[[Category:Isoflavones]]
[[Category:Antioxidants]]
[[Category:Nutrients]]
[[Category:Resorcinols]]
[[Category:Protein kinase inhibitors]]
[[Category:Protein kinase inhibitors]]
[[Category:Phytoestrogens]]

[[Category:Glycine receptor antagonists]]
[[ca:Genisteïna]]
[[Category:Selective ERβ agonists]]
[[de:Genistein]]
[[Category:Steroid sulfotransferase inhibitors]]
[[fr:Génistéine]]
[[it:Genisteina]]
[[lt:Genisteinas]]
[[nl:Genisteïne]]
[[ja:ゲニステイン]]
[[pl:Genisteina]]
[[fi:Genisteiini]]
[[uk:Геністейн]]
-