Skip to main content

Light Scattering to Quantify Protein–Protein Interactions at High Protein Concentrations

  • Protocol
  • First Online:
Protein Self-Assembly

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2039))

  • 1769 Accesses

Abstract

Static and dynamic (laser) light scattering (SLS and DLS, respectively) can be used to measure the so-called weak or colloidal protein–protein interactions in solution from low to high protein concentrations (c2). This chapter describes a methodology to measure protein–protein self-interactions using SLS and DLS, with illustrative examples for monoclonal antibody solutions from low to high protein concentrations (c2 ~ 1–102 g/L).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (Canada)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 149.00
Price excludes VAT (Canada)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (Canada)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

') var buybox = document.querySelector("[data-id=id_"+ timestamp +"]").parentNode var buyingOptions = buybox.querySelectorAll(".buying-option") ;[].slice.call(buyingOptions).forEach(initCollapsibles) var buyboxMaxSingleColumnWidth = 480 function initCollapsibles(subscription, index) { var toggle = subscription.querySelector(".buying-option-price") subscription.classList.remove("expanded") var form = subscription.querySelector(".buying-option-form") var priceInfo = subscription.querySelector(".price-info") var buyingOption = toggle.parentElement if (toggle && form && priceInfo) { toggle.setAttribute("role", "button") toggle.setAttribute("tabindex", "0") toggle.addEventListener("click", function (event) { var expandedBuyingOptions = buybox.querySelectorAll(".buying-option.expanded") var buyboxWidth = buybox.offsetWidth ;[].slice.call(expandedBuyingOptions).forEach(function(option) { if (buyboxWidth <= buyboxMaxSingleColumnWidth && option != buyingOption) { hideBuyingOption(option) } }) var expanded = toggle.getAttribute("aria-expanded") === "true" || false toggle.setAttribute("aria-expanded", !expanded) form.hidden = expanded if (!expanded) { buyingOption.classList.add("expanded") } else { buyingOption.classList.remove("expanded") } priceInfo.hidden = expanded }, false) } } function hideBuyingOption(buyingOption) { var toggle = buyingOption.querySelector(".buying-option-price") var form = buyingOption.querySelector(".buying-option-form") var priceInfo = buyingOption.querySelector(".price-info") toggle.setAttribute("aria-expanded", false) form.hidden = true buyingOption.classList.remove("expanded") priceInfo.hidden = true } function initKeyControls() { document.addEventListener("keydown", function (event) { if (document.activeElement.classList.contains("buying-option-price") && (event.code === "Space" || event.code === "Enter")) { if (document.activeElement) { event.preventDefault() document.activeElement.click() } } }, false) } function initialStateOpen() { var buyboxWidth = buybox.offsetWidth ;[].slice.call(buybox.querySelectorAll(".buying-option")).forEach(function (option, index) { var toggle = option.querySelector(".buying-option-price") var form = option.querySelector(".buying-option-form") var priceInfo = option.querySelector(".price-info") if (buyboxWidth > buyboxMaxSingleColumnWidth) { toggle.click() } else { if (index === 0) { toggle.click() } else { toggle.setAttribute("aria-expanded", "false") form.hidden = "hidden" priceInfo.hidden = "hidden" } } }) } initialStateOpen() if (window.buyboxInitialised) return window.buyboxInitialised = true initKeyControls() })()

Institutional subscriptions

Similar content being viewed by others

References

  1. Raut AS, Kalonia DS (2015) Opalescence in monoclonal antibody solutions and its correlation with intermolecular interactions in dilute and concentrated solutions. J Pharm Sci 104:1263–1274. https://doi.org/10.1002/jps.24326

    Article  CAS  PubMed  Google Scholar 

  2. Neergaard MS, Kalonia DS, Parshad H et al (2013) Viscosity of high concentration protein formulations of monoclonal antibodies of the IgG1 and IgG4 subclass – prediction of viscosity through protein–protein interaction measurements. Eur J Pharm Sci 49:400–410. https://doi.org/10.1016/j.ejps.2013.04.019

    Article  CAS  PubMed  Google Scholar 

  3. Connolly BD, Petry C, Yadav S et al (2012) Weak interactions govern the viscosity of concentrated antibody solutions: high-throughput analysis using the diffusion interaction parameter. Biophys J 103:69–78. https://doi.org/10.1016/j.bpj.2012.04.047

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Ghosh R, Calero-Rubio C, Saluja A, Roberts CJ (2016) Relating protein-protein interactions and aggregation rates from low to high concentrations. J Pharm Sci 105:1086–1096. https://doi.org/10.1016/j.xphs.2016.01.004

    Article  CAS  PubMed  Google Scholar 

  5. George A, Wilson WW (1994) Predicting protein crystallization from a dilute solution property. Acta Crystallogr D Biol Crystallogr 50:361–365. https://doi.org/10.1107/S0907444994001216

    Article  CAS  PubMed  Google Scholar 

  6. Dumetz AC, Chockla AM, Kaler EW, Lenhoff AM (2008) Effects of pH on protein-protein interactions and implications for protein phase behavior. Biochim Biophys Acta 1784:600–610. https://doi.org/10.1016/j.bbapap.2007.12.016

    Article  CAS  PubMed  Google Scholar 

  7. Mason BD, Zhang L, Remmele RL, Zhang J (2011) Opalescence of an IgG2 monoclonal antibody solution as it relates to liquid-liquid phase separation. J Pharm Sci 100:4587–4596. https://doi.org/10.1002/jps.22650

    Article  CAS  PubMed  Google Scholar 

  8. Saluja A, Fesinmeyer RM, Hogan S et al (2010) Diffusion and sedimentation interaction parameters for measuring the second virial coefficient and their utility as predictors of protein aggregation. Biophys J 99:2657–2665. https://doi.org/10.1016/j.bpj.2010.08.020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Blanco MA, Sahin E, Li Y, Roberts CJ (2011) Reexamining protein-protein and protein-solvent interactions from Kirkwood-Buff analysis of light scattering in multi-component solutions. J Chem Phys 134:225103. https://doi.org/10.1063/1.3596726

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Woldeyes MA, Calero-Rubio C, Furst EM, Roberts CJ (2017) Predicting protein interactions of concentrated globular protein solutions using colloidal models. J Phys Chem B 121:4756–4767. https://doi.org/10.1021/acs.jpcb.7b02183

    Article  CAS  PubMed  Google Scholar 

  11. Scherer TM, Liu J, Shire SJ, Minton AP (2010) Intermolecular interactions of IgG1 monoclonal antibodies at high concentrations characterized by light scattering. J Phys Chem B 114:12948–12957. https://doi.org/10.1021/jp1028646

    Article  CAS  PubMed  Google Scholar 

  12. Arzensek D, Kuzman D, Podgornik R et al (2015) Hofmeister effects in monoclonal antibody solution interactions. J Phys Chem B 119:10375–10389. https://doi.org/10.1021/acs.jpcb.5b02459

    Article  CAS  PubMed  Google Scholar 

  13. Fine BM, Lomakin A, Ogun OO, Benedek GB (1996) Static structure factor and collective diffusion of globular proteins in concentrated aqueous solution. J Chem Phys 104:326–335. https://doi.org/10.1063/1.470904

    Article  CAS  Google Scholar 

  14. Stradner A, Sedgwick H, Cardinaux F et al (2004) Equilibrium cluster formation in concentrated protein solutions and colloids. Nature 432:492–495. https://doi.org/10.1038/nature03109

    Article  CAS  PubMed  Google Scholar 

  15. Berne BJ, Pecora R (2000) Dynamic light scattering with applications to chemistry, biology, and physics. Dover Publications, Mineola, NY

    Google Scholar 

  16. Blanco MA, Perevozchikova T, Martorana V et al (2014) Protein-protein interactions in dilute to concentrated solutions: α-chymotrypsinogen in acidic conditions. J Phys Chem B 118:5817–5831. https://doi.org/10.1021/jp412301h

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Frisken BJ (2001) Revisiting the method of cumulants for the analysis of dynamic light-scattering data. Appl Opt 40:4087–4091

    Article  CAS  Google Scholar 

  18. Nägele G (1996) On the dynamics and structure of charge-stabilized suspensions. Phys Rep 272:215–372. https://doi.org/10.1016/0370-1573(95)00078-X

    Article  Google Scholar 

  19. Fernández C, Minton AP (2009) Static light scattering from concentrated protein solutions II: experimental test of theory for protein mixtures and weakly self-associating proteins. Biophys J 96:1992–1998. https://doi.org/10.1016/j.bpj.2008.11.054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Attri AK, Minton AP (2005) Composition gradient static light scattering: a new technique for rapid detection and quantitative characterization of reversible macromolecular hetero-associations in solution. Anal Biochem 346:132–138. https://doi.org/10.1016/j.ab.2005.08.013

    Article  CAS  PubMed  Google Scholar 

  21. Woldeyes MA, Qi W, Razinkov VI et al (2018) How well do low- and high-concentration protein interactions predict solution viscosities of monoclonal antibodies? J Pharm Sci. https://doi.org/10.1016/j.xphs.2018.07.007

  22. Calero-Rubio C, Saluja A, Roberts CJ (2016) Coarse-grained antibody models for “weak” protein–protein interactions from low to high concentrations. J Phys Chem B 120:6592–6605. https://doi.org/10.1021/acs.jpcb.6b04907

    Article  CAS  PubMed  Google Scholar 

  23. Calero-Rubio C, Ghosh R, Saluja A, Roberts CJ (2018) Predicting protein-protein interactions of concentrated antibody solutions using dilute solution data and coarse-grained molecular models. J Pharm Sci 107:1269–1281. https://doi.org/10.1016/j.xphs.2017.12.015

    Article  CAS  PubMed  Google Scholar 

  24. Liu L, Randolph TW, Carpenter JF (2012) Particles shed from syringe filters and their effects on agitation-induced protein aggregation. J Pharm Sci 101:2952–2959. https://doi.org/10.1002/jps.23225

    Article  CAS  PubMed  Google Scholar 

  25. Schärtl W (2007) Light scattering from polymer solutions and nanoparticle dispersions. Springer, Berlin

    Google Scholar 

Download references

Acknowledgments

Support from the National Science Foundation (NSF GRF to M.A.W.), Amgen, and the National Institute of Health (NIH R01EB006006) are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher J. Roberts .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Woldeyes, M.A., Calero-Rubio, C., Furst, E.M., Roberts, C.J. (2019). Light Scattering to Quantify Protein–Protein Interactions at High Protein Concentrations. In: McManus, J. (eds) Protein Self-Assembly. Methods in Molecular Biology, vol 2039. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9678-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9678-0_2

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9677-3

  • Online ISBN: 978-1-4939-9678-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics

Navigation

-