Skip to main content

Advertisement

Log in

Abnormal connectivity model of raphe nuclei with sensory-associated cortex in Parkinson’s disease with chronic pain

  • Original Article
  • Published:
Neurological Sciences Aims and scope Submit manuscript

Abstract

Background and Objective

There are indicates that raphe nuclei may be involved in the occurrence of chronic pain in Parkinson’s disease (PD). In the study, we investigated the functional connectivity pattern of raphe nuclei in Parkinson’s disease with chronic pain (PDP) to uncover its possible pathophysiology.

Methods

Fifteen PDP, who suffered from pain, lasted longer than 3 months, sixteen Parkinson’s disease patients with no pain (nPDP) and eighteen matched normal health controls (NCs) were recruited. All subjects completed the King’s Parkinson’s Pain Scale (KPPS) besides Parkinson-related scale and demographics. We performed a seed-based resting-state analysis of functional magnetic resonance imaging to explore whole-brain functional connectivity of the raphe nuclei. Multiple regression model was used to explore the related factors of pain including disease duration, disease severity, Hamilton Depression Rating Scale, age, sex, levodopa equivalent dose and the strength of network functional connectivity.

Results

Compared with the nPDP, the PDP group showed stronger functional connectivity between raphe nuclei and pain-related brain regions, including parietal lobe, insular lobe, cingulum cortex and prefrontal cortex, and the functional connectivity values of those areas were significantly positively correlated with KPPS independent of the clinical variables. Compared with NCs, the combined PD groups showed decreased functional connectivity including prefrontal cortex and cingulum cortex.

Conclusions

Abnormal functional connectivity model of raphe nuclei may be partly involved in pathophysiological mechanism of pain in PD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Broen MP, Braaksma MM, Patijn J, Weber WE (2012) Prevalence of pain in Parkinson’s disease: a systematic review using the modified QUADAS tool. Mov Disord 27(4):480–484

    Article  PubMed  Google Scholar 

  2. Negre-Pages L, Regragui W, Bouhassira D, Grandjean H, Rascol O, DoPaMi PSG (2008) Chronic pain in Parkinson’s disease: the cross-sectional French DoPaMiP survey. Mov Disord 23(10):1361–1369

    Article  PubMed  Google Scholar 

  3. Chaudhuri KR, Schapira AH (2009) Non-motor symptoms of parkinson’s disease: dopaminergic pathophysiology and treatment. Lancet Neurol 8(5):464–474

    Article  CAS  PubMed  Google Scholar 

  4. Fil A, Cano-de-la-Cuerda R, Munoz-Hellin E, Vela L, Ramiro-Gonzalez M, Fernandez-de-Las-Penas C (2013) Pain in Parkinson disease: a review of the literature. Parkinsonism Relat Disord 19(3):285–94 discussion

    Article  PubMed  Google Scholar 

  5. Schapira AHV, Chaudhuri KR, Jenner P (2017) Non-motor features of Parkinson disease. Nat Rev Neurosci 18(7):435–450

    Article  CAS  PubMed  Google Scholar 

  6. Dellapina E, Gerdelat-Mas A, Ory-Magne F, Pourcel L, Brefel-Courbon C (2011) Apomorphine effect on pain threshold in parkinson’s disease: a clinical and positron emission tomography study. Mov Disord 26(1):153–157

    Article  PubMed  Google Scholar 

  7. Tong Q, Zhang L, Yuan Y, Jiang S, Zhang R, Xu Q et al (2015) Reduced plasma serotonin and 5-hydroxyindoleacetic acid levels in Parkinson’s disease are associated with nonmotor symptoms. Parkinsonism Relat Disord 21(8):882–887

    Article  PubMed  Google Scholar 

  8. Djaldetti R, Yust-Katz S, Kolianov V, Melamed E, Dabby R (2007) The effect of duloxetine on primary pain symptoms in Parkinson disease. Clin Neuropharmacol 30(4):201–205

    Article  CAS  PubMed  Google Scholar 

  9. Bellingham GA, Peng PW (2010) Duloxetine: a review of its pharmacology and use in chronic pain management. Reg Anesth Pain Med 35(3):294–303

    Article  CAS  PubMed  Google Scholar 

  10. Braak H, Del Tredici K, Rüb U, de Vos RA, Jansen Steur EN, Braak E (2003) Staging of brain pathology related to sporadic parkinson’s disease. Neurobiol Aging 24(2):197–211

    Article  PubMed  Google Scholar 

  11. Scherder E, Wolters E, Polman C, Sergeant J, Swaab D (2005) Pain in Parkinson’s disease and multiple sclerosis: its relation to the medial and lateral pain systems. Neurosci Biobehav Rev 29(7):1047–1056

    Article  PubMed  Google Scholar 

  12. Wang CT, Mao CJ, Zhang XQ, Zhang CY, Lv DJ, Yang YP et al (2017) Attenuation of hyperalgesia responses via the modulation of 5-hydroxytryptamine signalings in the rostral ventromedial medulla and spinal cord in a 6-hydroxydopamine-induced rat model of Parkinson’s disease. Mol Pain 13:1744806917691525

    Article  PubMed  PubMed Central  Google Scholar 

  13. Zhou L, Liu MZ, Li Q, Deng J, Mu D, Sun YG (2017) Organization of Functional Long-Range Circuits Controlling the Activity of Serotonergic Neurons in the Dorsal Raphe Nucleus. Cell Rep 20(8):1991–1993

    Article  CAS  PubMed  Google Scholar 

  14. Phan KL, Wager T, Taylor SF, Liberzon I (2002) Functional neuroanatomy of emotion: a meta-analysis of emotion activation studies in PET and fMRI. Neuroimage 16(2):331–348

    Article  PubMed  Google Scholar 

  15. Chen T, Wang XL, Qu J, Wang W, Zhang T, Yanagawa Y et al (2013) Neurokinin-1 receptor-expressing neurons that contain serotonin and gamma-aminobutyric acid in the rat rostroventromedial medulla are involved in pain processing. J Pain 14(8):778–792

    Article  CAS  PubMed  Google Scholar 

  16. Taylor BK (2009) Spinal inhibitory neurotransmission in neuropathic pain. Curr Pain Headache Rep 13(3):208–214

    Article  PubMed  PubMed Central  Google Scholar 

  17. Ferraro S, Nigri A, Bruzzone MG, Brivio L, ProiettiCecchini A, Verri M et al (2018) Defective functional connectivity between posterior hypothalamus and regions of the diencephalic-mesencephalic junction in chronic cluster headache. Cephalalgia 38(13):1910–1918

    Article  PubMed  Google Scholar 

  18. Lee MJ, Park BY, Cho S, Kim ST, Park H, Chung CS (2019) Increased connectivity of pain matrix in chronic migraine: a resting-state functional MRI study. J Headache Pain 20(1):29

    Article  PubMed  PubMed Central  Google Scholar 

  19. Biswal Bharat, ZerrinYetkin F, Haughton VM, Hyde JS (2005) Functional connectivity in the motor cortex of resting human brain using echo-planar mri. Magn Reson Med 34(4):537–541

    Article  Google Scholar 

  20. Rogers BP, Morgan VL, Newton AT, Gore JC (2007) Assessing functional connectivity in the human brain by fMRI. Magn Reson Imaging 25(10):1347–1357

    Article  PubMed  PubMed Central  Google Scholar 

  21. Polli A, Weis L, Biundo R, Thacker M, Turolla A, Koutsikos K et al (2016) Anatomical and functional correlates of persistent pain in Parkinson’s disease. Mov Disord 31(12):1854–1864

    Article  PubMed  Google Scholar 

  22. Ferraro S, Grazzi L, Mandelli ML, Aquino D, Di Fiore D, Usai S, Bruzzone MG (2012) Pain processing in medication overuse headache: a functional magnetic resonance imaging (fmri) study. Pain Med 13(2):255–262

    Article  PubMed  Google Scholar 

  23. Hutchison WD, Davis KD, Lozano AM, Tasker RR, Dostrovsky JO (1999) Pain-related neurons in the human cingulate cortex [2]. Nat Neurosci 2(5):403–405

    Article  CAS  PubMed  Google Scholar 

  24. Otti A, Guendel H, Afra Wohlschläger, Zimmer C, Noll-Hussong M (2013) Frequency shifts in the anterior default mode network and the salience network in chronic pain disorder. BMC Psychiatry 13(1):84

    Article  PubMed  PubMed Central  Google Scholar 

  25. Vierck CJ, Cannon RL, Fry G, Maixner W, Whitsel BL (1997) Characteristics of temporal summation of second pain sensations elicited by brief contact of glabrous skin by a preheated thermode. J Neurophysiol 78(2):992–1002

    Article  PubMed  Google Scholar 

  26. Garry EM, Fleetwood-Walker SM (2004) Organizing pains. Trends Neurosci 27(6):292–294

    Article  CAS  PubMed  Google Scholar 

  27. Chaudhuri KR, Rizos A, Trenkwalder C, Rascol O, Pal S, Martino D et al (2015) King’s Parkinson’s disease pain scale, the first scale for pain in PD: An international validation. Mov Disord 30(12):1623–1631

    Article  PubMed  Google Scholar 

  28. Garcia RG, Lin RL, Lee J, Kim J, Barbieri R, Sclocco R et al (2017) Modulation of brainstem activity and connectivity by respiratory-gated auricular vagal afferent nerve stimulation in migraine patients. Pain 158(8):1461–1472

    Article  PubMed  PubMed Central  Google Scholar 

  29. Faulkner P, Ghahremani DG, Tyndale RF, Hellemann G, London ED (2018) Functional Connectivity of the Raphe Nuclei: Link to Tobacco Withdrawal in Smokers. Int J Neuropsychopharmacol 21(9):800–808

    Article  PubMed  PubMed Central  Google Scholar 

  30. Peyron R, Laurent B, GarcíaLarrea L (2000) Functional imaging of brain responses to pain. A review and meta-analysis (2000). Neurophysiol Clin-Clin Neurophysiol 30(5):263–288

    Article  CAS  Google Scholar 

  31. Price DD (2000) Psychological and neural mechanisms of the affective dimension of pain. Science 288(5472):1769–1772

    Article  CAS  PubMed  Google Scholar 

  32. Bodnar R, Heinricher MM (2016) Central Mechanisms of Pain Suppression: Central Mechanisms of Pain Modulation. Neuroscience in the 21st Century. p 3439–64

  33. Gallace A, Bellan V (2018) The parietal cortex and pain perception: a body protection system. Handb Clin Neurol 151:103–117

    Article  PubMed  Google Scholar 

  34. Dum RP, Levinthal DJ, Strick PL (2009) The spinothalamic system targets motor and sensory areas in the cerebral cortex of monkeys. J Neurosci 29(45):14223–14235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Munn EM, Harte SE, Lagman A, Borszcz GS (2009) Contribution of the periaqueductal gray to the suppression of pain affect produced by administration of morphine into the intralaminar thalamus of rat. J Pain 10(4):426–435

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Tang JS, Qu CL, Huo FQ (2009) The thalamic nucleus submedius and ventrolateral orbital cortex are involved in nociceptive modulation: a novel pain modulation pathway. Prog Neurobiol 89(4):383–389

    Article  PubMed  Google Scholar 

  37. Jasmin L, Burkey AR, Granato A, Ohara PT (2004) Rostral agranular insular cortex and pain areas of the central nervous system: a tract-tracing study in the rat. J Comp Neurol 468(3):425–440

    Article  PubMed  Google Scholar 

  38. Ploner M, Gross J, Timmermann L, Schnitzler A (2002) Cortical representation of first and second pain sensation in humans. Proc Natl Acad Sci USA 99(19):12444–12448

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Yu CX, Li B, Xu YK, Ji TT, Li L, Zhao CJ et al (2017) Altered functional connectivity of the periaqueductal gray in chronic neck and shoulder pain. NeuroReport 28(12):720–725

    Article  PubMed  Google Scholar 

  40. Zhuo M (2006) Molecular mechanisms of pain in the anterior cingulate cortex. J Neurosci Res 84(5):927–933

    Article  CAS  PubMed  Google Scholar 

  41. Hajós M, Richards CD, Székely AD, Sharp T (1998) An electrophysiological and neuroanatomical study of the medial prefrontal cortical projection to the midbrain raphe nuclei in the rat. Neuroscience 87(1):95–108

    Article  PubMed  Google Scholar 

  42. Davis KD, Moayedi M (2013) Central mechanisms of pain revealed through functional and structural MRI. J Neuroimmune Pharmacol 8(3):518–534

    Article  PubMed  Google Scholar 

  43. Jones AK, Qi LY, Fujirawa T, Luthra SK, Ashburner J, Bloomfield P, Cunningham VJ, Itoh M, Fukuda H, Jones T (1991) In vivo distribution of opioid receptors in man in relation to the cortical projections of the medial and lateral pain systems measured with positron emission tomography. Neurosci Lett 126(1):25–28

    Article  CAS  PubMed  Google Scholar 

  44. Wiech K, Ploner M, Tracey I (2008) Neurocognitive aspects of pain perception. Trends Cogn Sci 12(8):306–313

    Article  PubMed  Google Scholar 

  45. Bar KJ, Kohler S, Cruz F, Schumann A, Zepf FD, Wagner G (2020) Functional consequences of acute tryptophan depletion on raphe nuclei connectivity and network organization in healthy women. Neuroimage 207:116362

    Article  PubMed  Google Scholar 

  46. Pizzagalli DA (2011) Frontocingulate dysfunction in depression: toward biomarkers of treatment response. Neuropsychopharmacology 36(1):183–206

    Article  PubMed  Google Scholar 

Download references

Funding

This research was supported by the National Natural Science Foundation of China (No. 81871002, 81471334, 81100981) and the National Key Clinical Specialties Construction Program of China.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Anran Wang or Oumei Cheng.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to declare.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shen, Y., Wang, J., Peng, J. et al. Abnormal connectivity model of raphe nuclei with sensory-associated cortex in Parkinson’s disease with chronic pain. Neurol Sci 43, 3175–3185 (2022). https://doi.org/10.1007/s10072-022-05864-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10072-022-05864-9

Keywords

Navigation

-