Skip to main content

Advertisement

Log in

Design and implementation of an automated DT-PhotoFluor radiosynthesis module for 18F-fluorination of aliphatic, branched chain amino acids

  • Full Paper
  • Published:
Journal of Flow Chemistry Aims and scope Submit manuscript

Abstract

Herein we report the automation and scale-up of a photofluorination process key to the production of branched-chain aliphatic radiotracers such as (S)-5-[18F]fluorohomoleucine ((S)-5-[18F]]FHL). (S)-5-[18F]FHL is a leucine analogue that is primarily taken up by the L-type amino acid transporter (LAT or System L). LAT1 expression levels correlate closely with tumor proliferation, angiogenesis, and treatment outcomes, making it an attractive target for molecular imaging of cancer. We have previously synthesized (S)-5-[18F]FHL and tested this tracer in mice bearing PC3 (prostate) or U87 (glioma) xenografts in order to establish its feasibility for detecting and monitoring treatment for a broad range of cancers. In this study, the radiosynthesis of 5-[18F]FHL is demonstrated on an automated DT-PhotoFluor module with a radiochemical yield of 20.1 ± 4.8% (n = 3), radiochemical purity of 94.5 ± 4.9% (n = 3), and a synthesis time of ~ 75 min. The reported DT-PhotoFluor module will allow for higher molar activity, better reproducibility, and reduced radiation exposure for upcoming first-in-human studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

Data sets reported here are available upon requested from the corresponding author.

References

  1. Gambhir SS (2002) Molecular imaging of cancer with positron emission tomography. Nat Rev Cancer 2(9):683–693

    Article  CAS  PubMed  Google Scholar 

  2. James ML, Gambhir SS (2012) A molecular imaging primer: modalities, imaging agents, and applications. Physiol Rev 92(2):897–965

    Article  CAS  PubMed  Google Scholar 

  3. Jacobson O, Chen X (2010) PET designated flouride-18 production and chemistry. Curr Top Med Chem 10(11):1048–1059

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Schlyer DJ, Bastos MA, Alexoff D, Wolf AP (1990) Separation of [18F]fluoride from [18O]water using anion exchange resin. Int J Rad Appl Instrum A 41(6):531–533

    Article  CAS  PubMed  Google Scholar 

  5. Cole EL, Stewart MN, Littich R, Hoareau R, Scott PJ (2014) Radiosyntheses using fluorine-18: the art and science of late stage fluorination. Curr Top Med Chem 14(7):875–900

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Siikanen J, Ohlsson T, Medema J, Van-Essen J, Sandell A (2013) A niobium water target for routine production of [(1)(8)F]Fluoride with a MC 17 cyclotron. Appl Radiat Isot 72:133–136

    Article  CAS  PubMed  Google Scholar 

  7. Bishop A, Satyamurthy N, Bida G, Barrio JR (1996) Chemical reactivity of the 18F electrophilic reagents from the 18O(p, n) 18F gas target systems. Nucl Med Biol 23(5):559–565

    Article  CAS  PubMed  Google Scholar 

  8. Nickles RJ, Daube MF, Ruth TJ (1984) An 18O2 target for the production of [18F]F2. Int J Appl Radiat Isot 35:117–122

    Article  CAS  Google Scholar 

  9. Forsback S, Eskola O, Haaparanta M, Bergman J, Solin O (2008) Electrophilic synthesis of 6-[18F]fluoro-L-DOPA using post—target produced [18F]F2. Radiochim Acta 96:845–848

    Article  CAS  Google Scholar 

  10. Goud NS, Joshi RK, Bharath RD, Kumar P (2020) Fluorine-18: A radionuclide with diverse range of radiochemistry and synthesis strategies for target based PET diagnosis. Eur J Med Chem 187:111979

    Article  CAS  PubMed  Google Scholar 

  11. Bergman J, Solin O (1997) Fluorine-18-labeled fluorine gas for synthesis of tracer molecules. Nucl Med Biol 24(7):677–683

    Article  CAS  PubMed  Google Scholar 

  12. Schirrmacher R, Wangler C, Schirrmacher E (2007) Recent Developments and Trends in 18F-Radiochemistry: Syntheses and Applications. Mini Rev Org Chem 4:317–329

    Article  CAS  Google Scholar 

  13. Lapi SE, Welch MJ (2013) A historical perspective on the specific activity of radiopharmaceuticals: what have we learned in the 35years of the ISRC? Nucl Med Biol 40(3):314–320

    Article  CAS  PubMed  Google Scholar 

  14. Visser GW, Gorree GC, Braakhuis BJ, Herscheid JD (1989) An optimized synthesis of 18F-labelled 5-fluorouracil and a reevaluation of its use as a prognostic agent. Eur J Nucl Med 15(5):225–229

    Article  CAS  PubMed  Google Scholar 

  15. Bading JR, Alauddin MM, Fissekis JD, Shahinian AH, Joung J, Spector T, Conti PS (2000) Blocking catabolism with eniluracil enhances PET studies of 5-[18F]fluorouracil pharmacokinetics. J Nucl Med 41(10):1714–1724

    CAS  PubMed  Google Scholar 

  16. Firnau G, Chirakal R, Garnett ES (1984) Aromatic radiofluorination with [18F]fluorine gas: 6-[18F]fluoro-L-dopa. J Nucl Med 25(11):1228–1233

    CAS  PubMed  Google Scholar 

  17. Adam MJ, Ruth TJ, Grierson JR, Abeysekera B, Pate BD (1986) Routine synthesis of L-[18F]6-fluorodopa with fluorine-18 acetyl hypofluorite. J Nucl Med 27(9):1462–1466

    CAS  PubMed  Google Scholar 

  18. Namavari M, Bishop A, Satyamurthy N, Bida G, Barrio JR (1992) Regioselective radiofluorodestannylation with [18F]F2 and [18F]CH3COOF: a high yield synthesis of 6-[18F]Fluoro-L-dopa. Int J Rad Appl Instrum A 43(8):989–996

    Article  CAS  PubMed  Google Scholar 

  19. Hiller A, Fischer C, Jordanova A, Patt JT, Steinbach J (2008) Investigations to the synthesis of n.c.a. [18F]FClO3 as electrophilic fluorinating agent. Appl Radiat Isot 66:152–157

    Article  CAS  PubMed  Google Scholar 

  20. Stenhagen IS, Kirjavainen AK, Forsback SJ, Jorgensen CG, Robins EG, Luthra SK, Solin O, Gouverneur V (2013) [18F]fluorination of an arylboronic ester using [18F]selectfluor bis(triflate): application to 6-[18F]fluoro-L-DOPA. Chem Commun (Camb) 49(14):1386–1388

    Article  CAS  PubMed  Google Scholar 

  21. Teare H, Robins EG, Arstad E, Luthra SK, Gouverneur V (2007) Synthesis and reactivity of [18F]-N-fluorobenzenesulfonimide. Chem Commun (Camb) 23:2330–2

    Article  Google Scholar 

  22. Nodwell MB, Yang H, Colovic M, Yuan Z, Merkens H, Martin RE, Benard F, Schaffer P, Britton R (2017) (18)F-Fluorination of Unactivated C-H Bonds in Branched Aliphatic Amino Acids: Direct Synthesis of Oncological Positron Emission Tomography Imaging Agents. J Am Chem Soc 139(10):3595–3598

    Article  CAS  PubMed  Google Scholar 

  23. Nodwell MB, Yang H, Merkens H, Malik N, Colovic M, Bjorn W, Martin RE, Benard F, Schaffer P, Britton R (2019) (18)F-Branched-Chain Amino Acids: Structure-Activity Relationships and PET Imaging Potential. J Nucl Med 60(7):1003–1009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Rueda-Becerril M, Mahe O, Drouin M, Majewski MB, West JG, Wolf MO, Sammis GM, Paquin JF (2014) Direct C-F bond formation using photoredox catalysis. J Am Chem Soc 136(6):2637–2641

    Article  CAS  PubMed  Google Scholar 

  25. Rueda-Becerril M, Sazepin CC, Leung JC, Okbinoglu T, Kennepohl P, Paquin JF, Sammis GM (2012) Fluorine transfer to alkyl radicals. J Am Chem Soc 134(9):4026–4029

    Article  CAS  PubMed  Google Scholar 

  26. Zhang J-J, Lou L, Lv R, Chen J, Li Y, Wu G, Cai L, Liang SH, Chen Z (2024) Recent advances in photochemistry for positron emission tomography imaging. Chin Chem Lett:109342. https://doi.org/10.1016/j.cclet.2023.109342

  27. Yuan Z, Nodwell MB, Yang H, Malik N, Merkens H, Benard F, Martin RE, Schaffer P, Britton R (2018) Site-Selective, Late-Stage C-H (18) F-Fluorination on Unprotected Peptides for Positron Emission Tomography Imaging. Angew Chem Int Ed Engl 57(39):12733–12736

    Article  CAS  PubMed  Google Scholar 

  28. Yuan Z, Yang H, Malik N, Colovic M, Weber DS, Wilson D, Benard F, Martin RE, Warren JJ, Schaffer P, Britton R (2019) Electrostatic Effects Accelerate Decatungstate-Catalyzed C-H Fluorination Using [18F]- and [19F]NFSI in Small Molecules and Peptide Mimics. ACS Catal 9:8276–8284

    Article  CAS  Google Scholar 

  29. Wang Q, Holst J (2015) L-type amino acid transport and cancer: targeting the mTORC1 pathway to inhibit neoplasia. Am J Cancer Res 5(4):1281–1294

    PubMed  PubMed Central  Google Scholar 

  30. Hafliger P, Charles RP (2019) The L-type amino acid transporter LAT1-an emerging target in cancer. Int J Mol Sci 20(10):2428

  31. Turjanski N, Sawle GV, Playford ED, Weeks R, Lammerstma AA, Lees AJ, Brooks DJ (1994) PET studies of the presynaptic and postsynaptic dopaminergic system in Tourette’s syndrome. J Neurol Neurosurg Psychiatry 57(6):688–692

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Renneke RF, Pasquali M, Hill CL (1990) Polyoxometalate systems for the catalytic selective production of nonthermodynamic alkenes from alkanes. Nature of excited-state deactivation processes and control of subsequent thermal processes in polyoxometalate photoredox chemistry. J Am Chem Soc 112:6585–6594

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study is supported by Canadian Institute for Cancer Research – Innovation to Impact grant (#705808). TRIUMF receives federal funding via a contribution agreement with the National Research Council of Canada. Z.Y. gratefully acknowledges financial support from China Scholarship Council (#202107260030). We would like to thank TRIUMF's TR13 operation group consisting of Spencer Staiger, Toni Epp, Ryley Morgan, and led by David Prevost.

Funding

This work was supported by Canadian Cancer Society Research Institute, 705808, Paul Schaffer, China Scholarship Council, 202107260030, Zheliang Yuan.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Robert Britton or Paul Schaffer.

Ethics declarations

Competing interests

The authors declare no financial or non-financial interests, either directly or indirectly related to the work submitted for publication.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

• Decatungstate-mediated, photocatalytic radiofluorination is a new approach for producing libraries of fluorine-18 (F-18) labelled branch-chain, aliphatic amino acids with potential use in positron emission tomography (PET).

• An automated decatungstate photofluorination (DT-PhotoFluor) module has been designed and developed that improves process reproducibility while minimizing radiation exposure to radiochemistry personnel.

• Initial testing of the DT-PhotoFluor module for the radiofluorination of (S)-5-[18F]fluorohomoleucine showed comparable labeling results (e.g., radiochemical yield and radiochemical purity) to the manual radiosynthesis process.

• This study demonstrates the robustness and potential application of an automated flow module for radiosynthesis of 18F-labeled aliphatic, branched-chain amino acids for eventual preclinical and clinical trials.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Engudar, G., Yuan, Z., Nodwell, M.B. et al. Design and implementation of an automated DT-PhotoFluor radiosynthesis module for 18F-fluorination of aliphatic, branched chain amino acids. J Flow Chem 14, 11–21 (2024). https://doi.org/10.1007/s41981-024-00314-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41981-024-00314-3

Keywords

Navigation

-