Skip to main content
Log in

Involvement of heme oxygenase-1 in Korean colon cancer

  • Research Article
  • Published:
Tumor Biology

Abstract

Heme oxygenase-1 (HO-1) catabolizes heme into carbon monoxide, biliverdin, and free iron which mediate its protective effect against oxidative stress. The aim of the present study was to determine the expression level and activity of HO-1 in Korean colon cancer tissues and cell lines. HO-1 protein expression was higher (>1.5-fold) in tumor tissues than in adjacent normal tissues in 14 of 20 colon cancer patients, and HO-1 protein expression was closely correlated with HO-1 enzyme activity in cancer tissues. Immunohistochemical data confirmed that HO-1 protein was expressed at a higher level in colon cancer tissues than in normal mucosa. Furthermore, HO-1 mRNA and protein expression and enzyme activity were higher in the colon cancer cell lines Caco-2, SNU-407, SNU-1033, HT-29, and SW-403 than in the normal fetal human colon cell line FHC. Treatment with the HO-1 inhibitor zinc protoporphyrin decreased the viability of colon cancer cell lines. These data indicate that HO-1 may serve as a clinically useful biomarker of colon cancer and as a target for anticolon cancer drugs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Ministry of Health and Welfare of Korea. Reports of cancer incidence 07-27. Available from: http://www.mohw.go.kr/in-dex.jsp.

  2. Li M, Gu J. Changing patterns of colorectal cancer in China over a period of 20 years. World J Gastoenterol. 2005;11:4685–8.

    Article  Google Scholar 

  3. Matos E, Brandani A. Review on meat consumption and cancer in South America. Mutat Res. 2002;506–507:243–9.

    Article  Google Scholar 

  4. Nkondjock A, Ghadirian P. Associated nutritional risk of breast and colon cancers: a population-based case control study in Montreal, Canada. Cancer Lett. 2005;223:85–91.

    Article  CAS  Google Scholar 

  5. Glei M, Latunde-Dada GO, Klinder A, Becker TW, Hermann U, Voigt K, et al. Iron-overload induces oxidative DNA damage in the human colon carcinoma cell line HT29 clone 19A. Mutat Res. 2002;519:151–61.

    Article  CAS  Google Scholar 

  6. Sanders LM, Henderson CE, Hong MY, Barhoumi R, Burghardt RC, Carroll RJ, et al. Pro-oxidant environment of the colon compared to the small intestine may contribute to greater cancer susceptibility. Cancer Lett. 2004;208:155–61.

    Article  CAS  Google Scholar 

  7. Ryter SW, Choi AM. Heme oxygenase-1: molecular mechanisms of gene expression in oxygen-related stress. Antioxid Redox Signal. 2002;4:625–32.

    Article  CAS  Google Scholar 

  8. Applegate LA, Luscher P, Tyrrell RM. Induction of heme oxygenase: a general response to oxidant stress in cultured mammalian cells. Cancer Res. 1991;51:974–8.

    CAS  PubMed  Google Scholar 

  9. Rizzardini M, Carelli M, Cabello Porras MR, Cantoni L. Mechanisms of endotoxin-induced haem oxygenase mRNA accumulation in mouse liver: synergism by glutathione depletion and protection by N-acetylcysteine. Biochem J. 1994;304:477–83.

    Article  CAS  Google Scholar 

  10. Rossi A, Santoro MG. Induction by prostaglandin A1 of haem oxygenase in myoblastic cells: an effect independent of expression of the 70 kDa heat shock protein. Biochem J. 1995;308:455–63.

    Article  CAS  Google Scholar 

  11. Choi AM, Alam J. Heme oxygenase-1: function, regulation, and implication of a novel stress-inducible protein in oxidant-induced lung injury. Am J Respir Cell Mol Biol. 1996;15:9–19.

    Article  CAS  Google Scholar 

  12. Cisowski J, Loboda A, Józkowicz A, Chen S, Agarwal A, Dulak J. Role of heme oxygenase-1 in hydrogen peroxide-induced VEGF synthesis: effect of HO-1 knockout. Biochem Biophys Res Commun. 2005;326:670–6.

    Article  CAS  Google Scholar 

  13. Was H, Dulak J, Jozkowicz A. Heme oxygenase-1 in tumor biology and therapy. Curr Drug Targets Rev. 2010;11:1551–70.

    Article  CAS  Google Scholar 

  14. Lee J, Lee SK, Lee BU, Lee HJ, Cho NP, Yoon JH, et al. Upregulation of heme oxygenase-1 in oral epithelial dysplasias. Int J Oral Maxillofac Surg. 2008;37:287–92.

    Article  CAS  Google Scholar 

  15. Nuhn P, Künzli BM, Hennig R, Mitkus T, Ramanauskas T, Nobiling R, et al. Heme oxygenase-1 and its metabolites affect pancreatic tumor growth in vivo. Mol Cancer. 2009;8:37.

    Article  Google Scholar 

  16. Sass G, Leukel P, Schmitz V, Raskopf E, Ocker M, Neureiter D, et al. Inhibition of heme oxygenase 1 expression by small interfering RNA decreases orthotopic tumor growth in livers of mice. Int J Cancer. 2008;123:1269–77.

    Article  CAS  Google Scholar 

  17. Becker JC, Fukui H, Imai Y, Sekikawa A, Kimura T, Yamagishi H, et al. Colonic expression of heme oxygenase-1 is associated with a better long-term survival in patients with colorectal cancer. Scand J Gastroenterol. 2007;42:852–8.

    Article  CAS  Google Scholar 

  18. Fang J, Akaike T, Maeda H. Antiapoptotic role of heme oxygenase (HO) and the potential of HO as a target in anticancer treatment. Apoptosis. 2004;9:27–35.

    Article  CAS  Google Scholar 

  19. Tanaka S, Akaike T, Fang J, Beppu T, Ogawa M, Tamura F, et al. Antiapoptotic effect of haem oxygenase-1 induced by nitric oxide in experimental solid tumour. Br J Cancer. 2003;88:902–9.

    Article  CAS  Google Scholar 

  20. Alaoui-Jamali MA, Bismar TA, Gupta A, Szarek WA, Su J, Song W, et al. A novel experimental heme oxygenase-1-targeted therapy for hormone-refractory prostate cancer. Cancer Res. 2009;69:8017–24.

    Article  CAS  Google Scholar 

  21. Clark JE, Green CJ, Motterlini R. Involvement of the human oxygenase-carbon monoxide pathway in keratinocyte proliferation. Biochem Biophys Res Commun. 1997;241:215–20.

    Article  CAS  Google Scholar 

  22. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods. 2001;25:402–8.

    Article  CAS  Google Scholar 

  23. Carmichael J, DeGraff WG, Gazdar AF, Minna JD, Mitchell JB. Evaluation of a tetrazolium-based semiautomated colorimetric assay: assessment of chemosensitivity testing. Cancer Res. 1987;47:936–41.

    CAS  PubMed  Google Scholar 

  24. Liu ZM, Chen GG, Ng EK, Leung WK, Sung JJ, Chung SC. Upregulation of heme oxygenase-1 and p21 confers resistance to apoptosis in human gastric cancer cells. Oncogene. 2004;23:503–13.

    Article  CAS  Google Scholar 

  25. Sasaki T, Yoshida K, Kondo H, Ohmori H, Kuniyasu H. Heme oxygenase-1 accelerates protumoral effects of nitric oxide in cancer cells. Virchows Arch. 2005;446:525–31.

    Article  CAS  Google Scholar 

  26. Jozkowicz A, Was H, Dulak J. Heme oxygenase-1 in tumor: is it a false friend? Antioxid Redox Signal. 2007;9:2099–118.

    Article  CAS  Google Scholar 

  27. Fang J, Sawa T, Akaike T, Akuta T, Sahoo SK, Khaled G, et al. In vivo antitumor activity of pegylated zinc protoporphyrin: targeted inhibition of heme oxygenase in solid tumor. Cancer Res. 2003;63:3567–74.

    CAS  PubMed  Google Scholar 

  28. Fang J, Sawa T, Akaike T, Greish K, Maeda H. Enhancement of chemotherapeutic response of tumor cells by a heme oxygenase inhibitor, pegylated zinc protoporphyrin. Int J Cancer. 2004;109:1–8.

    Article  CAS  Google Scholar 

  29. Alcaraz MJ, Fernandez P, Guillen MI. Antiinflammatory actions of the heme oxygenase-1 pathway. Curr Pharm Des. 2003;9:2541–51.

    Article  CAS  Google Scholar 

  30. Mayerhofer M, Florian S, Krauth MT, Aichberger KJ, Bilban M, Marculescu R, et al. Identification of heme oxygenase-1 as a novel BCR/ABL-dependent survival factor in chronic myeloid leukemia. Cancer Res. 2004;64:3148–54.

    Article  CAS  Google Scholar 

  31. Itoh K, Wakabayashi N, Katoh Y, Ishii T, Igarashi K, Engel JD, et al. Keap1 represses nuclear activation of antioxidant responsive elements by Nrf2 through binding to the amino-terminal Neh2 domain. Genes Dev. 1999;13:76–86.

    Article  CAS  Google Scholar 

  32. Hayes JD, McMahon M. NRF2 and KEAP1 mutations: permanent activation of an adaptive response in cancer. Trends Biochem Sci. 2009;34:176–88.

    Article  CAS  Google Scholar 

  33. DeNicola GM, Karreth FA, Humpton TJ, Gopinathan A, Wei C, Frese K, et al. Oncogene-induced Nrf2 transcription promotes ROS detoxification and tumorigenesis. Nature. 2011;475:106–9.

    Article  CAS  Google Scholar 

  34. Kim KC, Kang KA, Zhang R, Piao MJ, Kim GY, Kang MY, et al. Up-regulation of Nrf2-mediated heme oxygenase-1 expression by eckol, a phlorotannin compound, through activation of Erk and PI3K/Akt. Int J Biochem Cell Biol. 2010;42:297–305.

    Article  CAS  Google Scholar 

  35. Imai M, Kikuchi H, Denda T, Ohyama K, Hirobe C, Toyoda H. Cytotoxic effects of flavonoids against a human colon cancer derived cell line, COLO 201: a potential natural anti-cancer substance. Cancer Lett. 2009;276:74–80.

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This study was supported by a grant from the National R&D Program for Cancer Control, Ministry of Health and Welfare, Republic of Korea (1120340).

Conflicts of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jin Won Hyun.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kang, K.A., Maeng, Y.H., Zhang, R. et al. Involvement of heme oxygenase-1 in Korean colon cancer. Tumor Biol. 33, 1031–1038 (2012). https://doi.org/10.1007/s13277-012-0336-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13277-012-0336-0

Keywords

Navigation

-