Skip to main content

This is a preview of improvements coming to the PMC website in October 2024. Learn more

Return to current site
Logo of Biochemical Journal Link to view articles on publisher site
. 2003 May 15;372(Pt 1):129–136. doi: 10.1042/BJ20021596

Prion peptide induces neuronal cell death through a pathway involving glycogen synthase kinase 3.

Mar Pérez 1, Ana I Rojo 1, Francisco Wandosell 1, Javier Díaz-Nido 1, Jesús Avila 1
PMCID: PMC1223368  PMID: 12578563

Abstract

Prion diseases are characterized by neuronal cell death, glial proliferation and deposition of prion peptide aggregates. An abnormal misfolded isoform of the prion protein (PrP) is considered to be responsible for this neurodegeneration. The PrP 106-126, a synthetic peptide obtained from the amyloidogenic region of the PrP, constitutes a model system to study prion-induced neurodegeneration as it retains the ability to trigger cell death in neuronal cultures. In the present study, we show that the addition of this prion peptide to cultured neurons increases the activity of glycogen synthase kinase 3 (GSK-3), which is accompanied by the enhanced phosphorylation of some microtubule-associated proteins including tau and microtubule-associated protein 2. Prion peptide-treated neurons become progressively atrophic, and die ultimately. Both lithium and insulin, which inhibit GSK-3 activity, significantly decrease prion peptide-induced cell death both in primary neuronal cultures and in neuroblastoma cells. Finally, the overexpression of a dominant-negative mutant of GSK-3 in transfected neuroblastoma cells efficiently prevents prion peptide-induced cell death. These results are consistent with the view that the activation of GSK-3 is a crucial mediator of prion peptide-induced neurodegeneration.

Full Text

The Full Text of this article is available as a PDF (233.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alvarez G., Muñoz-Montaño J. R., Satrústegui J., Avila J., Bogónez E., Díaz-Nido J. Lithium protects cultured neurons against beta-amyloid-induced neurodegeneration. FEBS Lett. 1999 Jun 25;453(3):260–264. doi: 10.1016/s0014-5793(99)00685-7. [DOI] [PubMed] [Google Scholar]
  2. Avila J., Domínguez J., Díaz-Nido J. Regulation of microtubule dynamics by microtubule-associated protein expression and phosphorylation during neuronal development. Int J Dev Biol. 1994 Mar;38(1):13–25. [PubMed] [Google Scholar]
  3. Bhat R. V., Shanley J., Correll M. P., Fieles W. E., Keith R. A., Scott C. W., Lee C. M. Regulation and localization of tyrosine216 phosphorylation of glycogen synthase kinase-3beta in cellular and animal models of neuronal degeneration. Proc Natl Acad Sci U S A. 2000 Sep 26;97(20):11074–11079. doi: 10.1073/pnas.190297597. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bijur G. N., De Sarno P., Jope R. S. Glycogen synthase kinase-3beta facilitates staurosporine- and heat shock-induced apoptosis. Protection by lithium. J Biol Chem. 2000 Mar 17;275(11):7583–7590. doi: 10.1074/jbc.275.11.7583. [DOI] [PubMed] [Google Scholar]
  5. Brown D. R., Herms J., Kretzschmar H. A. Mouse cortical cells lacking cellular PrP survive in culture with a neurotoxic PrP fragment. Neuroreport. 1994 Oct 27;5(16):2057–2060. doi: 10.1097/00001756-199410270-00017. [DOI] [PubMed] [Google Scholar]
  6. Brown D. R. Prion and prejudice: normal protein and the synapse. Trends Neurosci. 2001 Feb;24(2):85–90. doi: 10.1016/s0166-2236(00)01689-1. [DOI] [PubMed] [Google Scholar]
  7. Brown D. R., Schmidt B., Kretzschmar H. A. Role of microglia and host prion protein in neurotoxicity of a prion protein fragment. Nature. 1996 Mar 28;380(6572):345–347. doi: 10.1038/380345a0. [DOI] [PubMed] [Google Scholar]
  8. Chiesa R., Harris D. A. Prion diseases: what is the neurotoxic molecule? Neurobiol Dis. 2001 Oct;8(5):743–763. doi: 10.1006/nbdi.2001.0433. [DOI] [PubMed] [Google Scholar]
  9. Cohen P., Frame S. The renaissance of GSK3. Nat Rev Mol Cell Biol. 2001 Oct;2(10):769–776. doi: 10.1038/35096075. [DOI] [PubMed] [Google Scholar]
  10. Collinge J. Prion diseases of humans and animals: their causes and molecular basis. Annu Rev Neurosci. 2001;24:519–550. doi: 10.1146/annurev.neuro.24.1.519. [DOI] [PubMed] [Google Scholar]
  11. Combs C. K., Johnson D. E., Cannady S. B., Lehman T. M., Landreth G. E. Identification of microglial signal transduction pathways mediating a neurotoxic response to amyloidogenic fragments of beta-amyloid and prion proteins. J Neurosci. 1999 Feb 1;19(3):928–939. doi: 10.1523/JNEUROSCI.19-03-00928.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Crowder R. J., Freeman R. S. Glycogen synthase kinase-3 beta activity is critical for neuronal death caused by inhibiting phosphatidylinositol 3-kinase or Akt but not for death caused by nerve growth factor withdrawal. J Biol Chem. 2000 Nov 3;275(44):34266–34271. doi: 10.1074/jbc.M006160200. [DOI] [PubMed] [Google Scholar]
  13. De Gioia L., Selvaggini C., Ghibaudi E., Diomede L., Bugiani O., Forloni G., Tagliavini F., Salmona M. Conformational polymorphism of the amyloidogenic and neurotoxic peptide homologous to residues 106-126 of the prion protein. J Biol Chem. 1994 Mar 18;269(11):7859–7862. [PubMed] [Google Scholar]
  14. Della-Bianca V., Rossi F., Armato U., Dal-Pra I., Costantini C., Perini G., Politi V., Della Valle G. Neurotrophin p75 receptor is involved in neuronal damage by prion peptide-(106-126). J Biol Chem. 2001 Aug 6;276(42):38929–38933. doi: 10.1074/jbc.M107454200. [DOI] [PubMed] [Google Scholar]
  15. Dominguez I., Itoh K., Sokol S. Y. Role of glycogen synthase kinase 3 beta as a negative regulator of dorsoventral axis formation in Xenopus embryos. Proc Natl Acad Sci U S A. 1995 Aug 29;92(18):8498–8502. doi: 10.1073/pnas.92.18.8498. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Dorandeu A., Wingertsmann L., Chrétien F., Delisle M. B., Vital C., Parchi P., Montagna P., Lugaresi E., Ironside J. W., Budka H. Neuronal apoptosis in fatal familial insomnia. Brain Pathol. 1998 Jul;8(3):531–537. doi: 10.1111/j.1750-3639.1998.tb00175.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Ettaiche M., Pichot R., Vincent J. P., Chabry J. In vivo cytotoxicity of the prion protein fragment 106-126. J Biol Chem. 2000 Nov 24;275(47):36487–36490. doi: 10.1074/jbc.C000579200. [DOI] [PubMed] [Google Scholar]
  18. Florio T., Thellung S., Amico C., Robello M., Salmona M., Bugiani O., Tagliavini F., Forloni G., Schettini G. Prion protein fragment 106-126 induces apoptotic cell death and impairment of L-type voltage-sensitive calcium channel activity in the GH3 cell line. J Neurosci Res. 1998 Nov 1;54(3):341–352. doi: 10.1002/(SICI)1097-4547(19981101)54:3<341::AID-JNR5>3.0.CO;2-G. [DOI] [PubMed] [Google Scholar]
  19. Forloni G., Angeretti N., Chiesa R., Monzani E., Salmona M., Bugiani O., Tagliavini F. Neurotoxicity of a prion protein fragment. Nature. 1993 Apr 8;362(6420):543–546. doi: 10.1038/362543a0. [DOI] [PubMed] [Google Scholar]
  20. Giese A., Groschup M. H., Hess B., Kretzschmar H. A. Neuronal cell death in scrapie-infected mice is due to apoptosis. Brain Pathol. 1995 Jul;5(3):213–221. doi: 10.1111/j.1750-3639.1995.tb00597.x. [DOI] [PubMed] [Google Scholar]
  21. Gray F., Chrétien F., Adle-Biassette H., Dorandeu A., Ereau T., Delisle M. B., Kopp N., Ironside J. W., Vital C. Neuronal apoptosis in Creutzfeldt-Jakob disease. J Neuropathol Exp Neurol. 1999 Apr;58(4):321–328. doi: 10.1097/00005072-199904000-00002. [DOI] [PubMed] [Google Scholar]
  22. Grimes C. A., Jope R. S. The multifaceted roles of glycogen synthase kinase 3beta in cellular signaling. Prog Neurobiol. 2001 Nov;65(4):391–426. doi: 10.1016/s0301-0082(01)00011-9. [DOI] [PubMed] [Google Scholar]
  23. Gu Yaping, Fujioka Hisashi, Mishra Ravi Shankar, Li Ruliang, Singh Neena. Prion peptide 106-126 modulates the aggregation of cellular prion protein and induces the synthesis of potentially neurotoxic transmembrane PrP. J Biol Chem. 2001 Oct 26;277(3):2275–2286. doi: 10.1074/jbc.M104345200. [DOI] [PubMed] [Google Scholar]
  24. Hartigan J. A., Johnson G. V. Transient increases in intracellular calcium result in prolonged site-selective increases in Tau phosphorylation through a glycogen synthase kinase 3beta-dependent pathway. J Biol Chem. 1999 Jul 23;274(30):21395–21401. doi: 10.1074/jbc.274.30.21395. [DOI] [PubMed] [Google Scholar]
  25. Hetman M., Cavanaugh J. E., Kimelman D., Xia Z. Role of glycogen synthase kinase-3beta in neuronal apoptosis induced by trophic withdrawal. J Neurosci. 2000 Apr 1;20(7):2567–2574. doi: 10.1523/JNEUROSCI.20-07-02567.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Hughes K., Nikolakaki E., Plyte S. E., Totty N. F., Woodgett J. R. Modulation of the glycogen synthase kinase-3 family by tyrosine phosphorylation. EMBO J. 1993 Feb;12(2):803–808. doi: 10.1002/j.1460-2075.1993.tb05715.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Jamieson E., Jeffrey M., Ironside J. W., Fraser J. R. Apoptosis and dendritic dysfunction precede prion protein accumulation in 87V scrapie. Neuroreport. 2001 Jul 20;12(10):2147–2153. doi: 10.1097/00001756-200107200-00021. [DOI] [PubMed] [Google Scholar]
  28. Jobling M. F., Stewart L. R., White A. R., McLean C., Friedhuber A., Maher F., Beyreuther K., Masters C. L., Barrow C. J., Collins S. J. The hydrophobic core sequence modulates the neurotoxic and secondary structure properties of the prion peptide 106-126. J Neurochem. 1999 Oct;73(4):1557–1565. doi: 10.1046/j.1471-4159.1999.0731557.x. [DOI] [PubMed] [Google Scholar]
  29. King T. D., Bijur G. N., Jope R. S. Caspase-3 activation induced by inhibition of mitochondrial complex I is facilitated by glycogen synthase kinase-3beta and attenuated by lithium. Brain Res. 2001 Nov 16;919(1):106–114. doi: 10.1016/s0006-8993(01)03005-0. [DOI] [PubMed] [Google Scholar]
  30. Klein P. S., Melton D. A. A molecular mechanism for the effect of lithium on development. Proc Natl Acad Sci U S A. 1996 Aug 6;93(16):8455–8459. doi: 10.1073/pnas.93.16.8455. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Lesort M., Jope R. S., Johnson G. V. Insulin transiently increases tau phosphorylation: involvement of glycogen synthase kinase-3beta and Fyn tyrosine kinase. J Neurochem. 1999 Feb;72(2):576–584. doi: 10.1046/j.1471-4159.1999.0720576.x. [DOI] [PubMed] [Google Scholar]
  32. Lucas J. J., Hernández F., Gómez-Ramos P., Morán M. A., Hen R., Avila J. Decreased nuclear beta-catenin, tau hyperphosphorylation and neurodegeneration in GSK-3beta conditional transgenic mice. EMBO J. 2001 Jan 15;20(1-2):27–39. doi: 10.1093/emboj/20.1.27. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Lucassen P. J., Williams A., Chung W. C., Fraser H. Detection of apoptosis in murine scrapie. Neurosci Lett. 1995 Oct 6;198(3):185–188. doi: 10.1016/0304-3940(95)11995-9. [DOI] [PubMed] [Google Scholar]
  34. Manji H. K., Moore G. J., Rajkowska G., Chen G. Neuroplasticity and cellular resilience in mood disorders. Mol Psychiatry. 2000 Nov;5(6):578–593. doi: 10.1038/sj.mp.4000811. [DOI] [PubMed] [Google Scholar]
  35. Mattson M. P. Apoptosis in neurodegenerative disorders. Nat Rev Mol Cell Biol. 2000 Nov;1(2):120–129. doi: 10.1038/35040009. [DOI] [PubMed] [Google Scholar]
  36. Mattson M. P., Barger S. W., Begley J. G., Mark R. J. Calcium, free radicals, and excitotoxic neuronal death in primary cell culture. Methods Cell Biol. 1995;46:187–216. doi: 10.1016/s0091-679x(08)61930-5. [DOI] [PubMed] [Google Scholar]
  37. Muñoz-Montaño J. R., Moreno F. J., Avila J., Diaz-Nido J. Lithium inhibits Alzheimer's disease-like tau protein phosphorylation in neurons. FEBS Lett. 1997 Jul 14;411(2-3):183–188. doi: 10.1016/s0014-5793(97)00688-1. [DOI] [PubMed] [Google Scholar]
  38. Muñoz-Montaño J. R., Moreno F. J., Avila J., Díaz-Nido J. Downregulation of glycogen synthase kinase-3beta (GSK-3beta) protein expression during neuroblastoma IMR-32 cell differentiation. J Neurosci Res. 1999 Feb 1;55(3):278–285. doi: 10.1002/(SICI)1097-4547(19990201)55:3<278::AID-JNR2>3.0.CO;2-2. [DOI] [PubMed] [Google Scholar]
  39. Müller W. E., Ushijima H., Schröder H. C., Forrest J. M., Schatton W. F., Rytik P. G., Heffner-Lauc M. Cytoprotective effect of NMDA receptor antagonists on prion protein (PrionSc)-induced toxicity in rat cortical cell cultures. Eur J Pharmacol. 1993 Aug 15;246(3):261–267. doi: 10.1016/0922-4106(93)90040-g. [DOI] [PubMed] [Google Scholar]
  40. Novak M., Jakes R., Edwards P. C., Milstein C., Wischik C. M. Difference between the tau protein of Alzheimer paired helical filament core and normal tau revealed by epitope analysis of monoclonal antibodies 423 and 7.51. Proc Natl Acad Sci U S A. 1991 Jul 1;88(13):5837–5841. doi: 10.1073/pnas.88.13.5837. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. O'Donovan C. N., Tobin D., Cotter T. G. Prion protein fragment PrP-(106-126) induces apoptosis via mitochondrial disruption in human neuronal SH-SY5Y cells. J Biol Chem. 2001 Aug 30;276(47):43516–43523. doi: 10.1074/jbc.M103894200. [DOI] [PubMed] [Google Scholar]
  42. Pap M., Cooper G. M. Role of glycogen synthase kinase-3 in the phosphatidylinositol 3-Kinase/Akt cell survival pathway. J Biol Chem. 1998 Aug 7;273(32):19929–19932. doi: 10.1074/jbc.273.32.19929. [DOI] [PubMed] [Google Scholar]
  43. Post K., Brown D. R., Groschup M., Kretzschmar H. A., Riesner D. Neurotoxicity but not infectivity of prion proteins can be induced reversibly in vitro. Arch Virol Suppl. 2000;(16):265–273. doi: 10.1007/978-3-7091-6308-5_25. [DOI] [PubMed] [Google Scholar]
  44. Prusiner S. B. Prions. Proc Natl Acad Sci U S A. 1998 Nov 10;95(23):13363–13383. doi: 10.1073/pnas.95.23.13363. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Pérez M., Wandosell F., Colaço C., Avila J. Sulphated glycosaminoglycans prevent the neurotoxicity of a human prion protein fragment. Biochem J. 1998 Oct 15;335(Pt 2):369–374. doi: 10.1042/bj3350369. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Roth K. A. Caspases, apoptosis, and Alzheimer disease: causation, correlation, and confusion. J Neuropathol Exp Neurol. 2001 Sep;60(9):829–838. doi: 10.1093/jnen/60.9.829. [DOI] [PubMed] [Google Scholar]
  47. Ryves W. J., Fryer L., Dale T., Harwood A. J. An assay for glycogen synthase kinase 3 (GSK-3) for use in crude cell extracts. Anal Biochem. 1998 Nov 1;264(1):124–127. doi: 10.1006/abio.1998.2832. [DOI] [PubMed] [Google Scholar]
  48. Sanchez S., Sayas C. L., Lim F., Diaz-Nido J., Avila J., Wandosell F. The inhibition of phosphatidylinositol-3-kinase induces neurite retraction and activates GSK3. J Neurochem. 2001 Aug;78(3):468–481. doi: 10.1046/j.1471-4159.2001.00453.x. [DOI] [PubMed] [Google Scholar]
  49. Sayas C. L., Moreno-Flores M. T., Avila J., Wandosell F. The neurite retraction induced by lysophosphatidic acid increases Alzheimer's disease-like Tau phosphorylation. J Biol Chem. 1999 Dec 24;274(52):37046–37052. doi: 10.1074/jbc.274.52.37046. [DOI] [PubMed] [Google Scholar]
  50. Selvaggini C., De Gioia L., Cantù L., Ghibaudi E., Diomede L., Passerini F., Forloni G., Bugiani O., Tagliavini F., Salmona M. Molecular characteristics of a protease-resistant, amyloidogenic and neurotoxic peptide homologous to residues 106-126 of the prion protein. Biochem Biophys Res Commun. 1993 Aug 16;194(3):1380–1386. doi: 10.1006/bbrc.1993.1977. [DOI] [PubMed] [Google Scholar]
  51. Stambolic V., Ruel L., Woodgett J. R. Lithium inhibits glycogen synthase kinase-3 activity and mimics wingless signalling in intact cells. Curr Biol. 1996 Dec 1;6(12):1664–1668. doi: 10.1016/s0960-9822(02)70790-2. [DOI] [PubMed] [Google Scholar]
  52. Sáez-Valero J., Angeretti N., Forloni G. Caspase-3 activation by beta-amyloid and prion protein peptides is independent from their neurotoxic effect. Neurosci Lett. 2000 Nov 3;293(3):207–210. doi: 10.1016/s0304-3940(00)01532-9. [DOI] [PubMed] [Google Scholar]
  53. Sánchez Martin C., Díaz-Nido J., Avila J. Regulation of a site-specific phosphorylation of the microtubule-associated protein 2 during the development of cultured neurons. Neuroscience. 1998 Dec;87(4):861–870. doi: 10.1016/s0306-4522(98)00195-x. [DOI] [PubMed] [Google Scholar]
  54. Sánchez Martin C., Ledesma D., Dotti C. G., Avila J. Microtubule-associated protein-2 located in growth regions of rat hippocampal neurons is highly phosphorylated at its proline-rich region. Neuroscience. 2000;101(4):885–893. doi: 10.1016/s0306-4522(00)00434-6. [DOI] [PubMed] [Google Scholar]
  55. Sánchez C., Díaz-Nido J., Avila J. Phosphorylation of microtubule-associated protein 2 (MAP2) and its relevance for the regulation of the neuronal cytoskeleton function. Prog Neurobiol. 2000 Jun;61(2):133–168. doi: 10.1016/s0301-0082(99)00046-5. [DOI] [PubMed] [Google Scholar]
  56. Tagliavini F., Lievens P. M., Tranchant C., Warter J. M., Mohr M., Giaccone G., Perini F., Rossi G., Salmona M., Piccardo P. A 7-kDa prion protein (PrP) fragment, an integral component of the PrP region required for infectivity, is the major amyloid protein in Gerstmann-Sträussler-Scheinker disease A117V. J Biol Chem. 2000 Nov 21;276(8):6009–6015. doi: 10.1074/jbc.M007062200. [DOI] [PubMed] [Google Scholar]
  57. Takashima A., Honda T., Yasutake K., Michel G., Murayama O., Murayama M., Ishiguro K., Yamaguchi H. Activation of tau protein kinase I/glycogen synthase kinase-3beta by amyloid beta peptide (25-35) enhances phosphorylation of tau in hippocampal neurons. Neurosci Res. 1998 Aug;31(4):317–323. doi: 10.1016/s0168-0102(98)00061-3. [DOI] [PubMed] [Google Scholar]
  58. Takashima A., Noguchi K., Sato K., Hoshino T., Imahori K. Tau protein kinase I is essential for amyloid beta-protein-induced neurotoxicity. Proc Natl Acad Sci U S A. 1993 Aug 15;90(16):7789–7793. doi: 10.1073/pnas.90.16.7789. [DOI] [PMC free article] [PubMed] [Google Scholar]
  59. White A. R., Guirguis R., Brazier M. W., Jobling M. F., Hill A. F., Beyreuther K., Barrow C. J., Masters C. L., Collins S. J., Cappai R. Sublethal concentrations of prion peptide PrP106-126 or the amyloid beta peptide of Alzheimer's disease activates expression of proapoptotic markers in primary cortical neurons. Neurobiol Dis. 2001 Apr;8(2):299–316. doi: 10.1006/nbdi.2001.0386. [DOI] [PubMed] [Google Scholar]
  60. White A. R., Huang X., Jobling M. F., Barrow C. J., Beyreuther K., Masters C. L., Bush A. I., Cappai R. Homocysteine potentiates copper- and amyloid beta peptide-mediated toxicity in primary neuronal cultures: possible risk factors in the Alzheimer's-type neurodegenerative pathways. J Neurochem. 2001 Mar;76(5):1509–1520. doi: 10.1046/j.1471-4159.2001.00178.x. [DOI] [PubMed] [Google Scholar]
  61. Williams A., Lucassen P. J., Ritchie D., Bruce M. PrP deposition, microglial activation, and neuronal apoptosis in murine scrapie. Exp Neurol. 1997 Apr;144(2):433–438. doi: 10.1006/exnr.1997.6424. [DOI] [PubMed] [Google Scholar]
  62. Yankner B. A. Mechanisms of neuronal degeneration in Alzheimer's disease. Neuron. 1996 May;16(5):921–932. doi: 10.1016/s0896-6273(00)80115-4. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES

-