Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1999 Jun;112(6):951-6.
doi: 10.1046/j.1523-1747.1999.00612.x.

Infrared spectra of basal cell carcinomas are distinct from non-tumor-bearing skin components

Affiliations
Free article

Infrared spectra of basal cell carcinomas are distinct from non-tumor-bearing skin components

L M McIntosh et al. J Invest Dermatol. 1999 Jun.
Free article

Abstract

Infrared spectroscopy, by probing the molecular vibration of chemical bonds, directly indicates tissue biochemistry. An expanding body of literature suggests that infrared spectra distinguish diseased from normal tissue. The authors used infrared spectroscopy to examine basal cell carcinoma to explore distinctive characteristics of basal cell carcinoma versus normal skin samples and other skin neoplasms. Spectra of epidermis, tumor, follicle sheath, and dermis were acquired from unstained frozen sections, and analyzed qualitatively, by t-tests and by linear discriminant analyses. Dermal spectra were significantly different from the other skin components mainly due to absorptions from collagen in dermis. Spectra of normal epidermis and basal cell carcinoma were significantly different by virtue of subtle differences in protein structure and nucleic acid content. Linear discriminant analysis characterized spectra as arising from basal cell carcinoma, epidermis, or follicle sheath with 98.7% accuracy. Use of linear discriminant analysis accurately classified spectra as arising from epidermis overlying basal cell carcinoma versus epidermis overlying nontumor-bearing skin in 98.0% of cases. Spectra of basal cell carcinoma, squamous cell carcinoma, nevi, and malignant melanoma were qualitatively similar. Distinction of basal cell carcinoma, squamous cell carcinoma, and melanocytic lesions by linear discriminant analyses, however, was 93.5% accurate. Therefore, spectral separation of abnormal versus normal tissue was achieved with high sensitivity and specificity, which points to infrared spectroscopy as a potentially useful screening tool for cutaneous neoplasia.

PubMed Disclaimer

Similar articles

Cited by

LinkOut - more resources

-