Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2000 Jun 9;275(23):17349-57.
doi: 10.1074/jbc.M000050200.

Electron transfer, oxygen binding, and nitric oxide feedback inhibition in endothelial nitric-oxide synthase

Affiliations
Free article

Electron transfer, oxygen binding, and nitric oxide feedback inhibition in endothelial nitric-oxide synthase

H M Abu-Soud et al. J Biol Chem. .
Free article

Abstract

We studied steps that make up the initial and steady-state phases of nitric oxide (NO) synthesis to understand how activity of bovine endothelial NO synthase (eNOS) is regulated. Stopped-flow analysis of NADPH-dependent flavin reduction showed the rate increased from 0. 13 to 86 s(-1) upon calmodulin binding, but this supported slow heme reduction in the presence of either Arg or N(omega)-hydroxy-l-arginine (0.005 and 0.014 s(-1), respectively, at 10 degrees C). O(2) binding to ferrous eNOS generated a transient ferrous dioxy species (Soret peak at 427 nm) whose formation and decay kinetics indicate it can participate in NO synthesis. The kinetics of heme-NO complex formation were characterized under anaerobic conditions and during the initial phase of NO synthesis. During catalysis heme-NO complex formation required buildup of relatively high solution NO concentrations (>50 nm), which were easily achieved with N(omega)-hydroxy-l-arginine but not with Arg as substrate. Heme-NO complex formation caused eNOS NADPH oxidation and citrulline synthesis to decrease 3-fold and the apparent K(m) for O(2) to increase 6-fold. Our main conclusions are: 1) The slow steady-state rate of NO synthesis by eNOS is primarily because of slow electron transfer from its reductase domain to the heme, rather than heme-NO complex formation or other aspects of catalysis. 2) eNOS forms relatively little heme-NO complex during NO synthesis from Arg, implying NO feedback inhibition has a minimal role. These properties distinguish eNOS from the other NOS isoforms and provide a foundation to better understand its role in physiology and pathology.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources

-