Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2000 Jul;37(2):331-44.
doi: 10.1046/j.1365-2958.2000.01994.x.

Membrane topology of the Mep/Amt family of ammonium transporters

Affiliations
Free article

Membrane topology of the Mep/Amt family of ammonium transporters

G H Thomas et al. Mol Microbiol. 2000 Jul.
Free article

Abstract

The Mep/Amt proteins constitute a new family of transport proteins that are ubiquitous in nature. Members from bacteria, yeast and plants have been identified experimentally as high-affinity ammonium transporters. We have determined the topology of AmtB, a Mep/Amt protein from Escherichia coli, as a representative protein for the complete family. This was established using a minimal set of AmtB-PhoA fusion proteins with a complementary set of AmtB-LacZ fusions. These data, accompanied by an in silico analysis, indicate that the majority of the Mep/Amt proteins contain 11 membrane-spanning helices, with the N-terminus on the exterior face of the membrane and the C-terminus on the interior. A small subset, including E. coli AmtB, probably have an additional twelfth membrane-spanning region at the N-terminus. Addition of PhoA or LacZ alpha-peptide to the C-terminus of E. coli AmtB resulted in complete loss of transport activity, as judged by measurements of [14C]-methylammonium uptake. This C-terminal region, along with four membrane-spanning helices, contains multiple residues that are conserved within the Mep/Amt protein family. Structural modelling of the E. coli AmtB protein suggests a number of secondary structural features that might contribute to function, including a putative ammonium binding site on the periplasmic face of the membrane at residue Asp-182. The implications of these results are discussed in relation to the structure and function of the related human Rhesus proteins.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources

-