Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2001 Oct;109(10):1079-84.
doi: 10.1289/ehp.011091079.

Iron deficiency associated with higher blood lead in children living in contaminated environments

Affiliations

Iron deficiency associated with higher blood lead in children living in contaminated environments

A Bradman et al. Environ Health Perspect. 2001 Oct.

Abstract

The evidence that iron deficiency increases lead child exposure is based primarily on animal data and limited human studies, and some of this evidence is contradictory. No studies of iron status and blood lead levels in children have accounted for environmental lead contamination and, therefore, the source of their exposure. Thus, no studies have directly determined whether iron deficiency modifies the relationship of environmental lead and blood lead. In this study, we compared blood lead levels of iron-deficient and iron-replete children living in low, medium, or highly contaminated environments. Measurements of lead in paint, soil, dust, and blood, age of housing, and iron status were collected from 319 children ages 1-5. We developed two lead exposure factors to summarize the correlated exposure variables: Factor 1 summarized all environmental measures, and Factor 2 was weighted for lead loading of house dust. The geometric mean blood lead level was 4.9 microg/dL; 14% exceeded 10 microg/dL. Many of the children were iron deficient (24% with ferritin < 12 ng/dL). Seventeen percent of soil leads exceeded 500 microg/g, and 23% and 63% of interior and exterior paint samples exceeded 5,000 microg/g. The unadjusted geometric mean blood lead level for iron-deficient children was higher by 1 microg/dL; this difference was greater (1.8 microg/dL) after excluding Asians. Blood lead levels were higher for iron-deficient children for each tertile of exposure as estimated by Factors 1 and 2 for non-Asian children. Elevated blood lead among iron-deficient children persisted after adjusting for potential confounders by multivariate regression; the largest difference in blood lead levels between iron-deficient and -replete children, approximately 3 microg/dL, was among those living in the most contaminated environments. Asian children had a paradoxical association of sufficient iron status and higher blood lead level, which warrants further investigation. Improving iron status, along with reducing exposures, may help reduce blood lead levels among most children, especially those living in the most contaminated environments.

PubMed Disclaimer

Similar articles

Cited by

References

    1. N Engl J Med. 1979 Mar 29;300(13):689-95 - PubMed
    1. Gastroenterology. 1979 Nov;77(5):1074-81 - PubMed
    1. Environ Res. 1979 Apr;18(2):369-76 - PubMed
    1. Am J Clin Nutr. 1980 Jan;33(1):86-118 - PubMed
    1. Lancet. 1980 Aug 2;2(8188):236-7 - PubMed

Publication types

LinkOut - more resources

-