Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2004 Feb;10(2):304-10.
doi: 10.3201/eid1002.030731.

Serologic and molecular biologic methods for SARS-associated coronavirus infection, Taiwan

Affiliations

Serologic and molecular biologic methods for SARS-associated coronavirus infection, Taiwan

Ho-Sheng Wu et al. Emerg Infect Dis. 2004 Feb.

Abstract

Severe acute respiratory syndrome (SARS) has raised a global alert since March 2003. After its causative agent, SARS-associated coronavirus (SARS-CoV), was confirmed, laboratory methods, including virus isolation, reverse transcriptase-polymerase chain reaction (RT-PCR), and serologic methods, have been quickly developed. In this study, we evaluated four serologic tests ( neutralization test, enzyme-linked immunosorbent assay [ELISA], immunofluorescent assay [IFA], and immunochromatographic test [ICT]) for detecting antibodies to SARS-CoV in sera of 537 probable SARS case-patients with correlation to the RT-PCR. With the neutralization test as a reference method, the sensitivity, specificity, positive predictive value, and negative predictive value were 98.2%, 98.7%, 98.7%, and 98.4% for ELISA; 99.1%, 87.8%, 88.1% and 99.1% for IFA; 33.6%, 98.2%, 95.7%, and 56.1% for ICT, respectively. We also compared the recombinant-based western blot with the whole virus-based IFA and ELISA; the data showed a high correlation between these methods, with an overall agreement of >90%. Our results provide a systematic analysis of serologic and molecular methods for evaluating SARS-CoV infection.

PubMed Disclaimer

Figures

Figure 1
Figure 1
Polymerase chain reaction–positive rates of throat swab specimens collected on different days from probable SARS cases. If a patient had two or more specimens, the patient was only counted once.
Figure 2
Figure 2
Antibody positive rate of serum specimens collected on different days from probable SARS case-patients. If a patient had two or more specimens, the patient was only counted once.

Similar articles

Cited by

References

    1. CDC SARS Investigative Team. Fleischauer AT, Outbreak of severe acute respiratory syndrome—worldwide. MMWR Morb Mortal Wkly Rep. 2003;52:226–8. - PubMed
    1. Cumulative number of SARS probable cases. WHO. [Accessed July 3, 2003] Available from: URL: http://www.who.int/csr/sars/country/2003_06_25 /en/.
    1. Cumulative number of SARS probable cases in Taiwan, SARS online information center, Center for Disease Control, Taiwan. [Accessed August 2, 2003] Available from: URL: http://www.cdc.gov.tw/sarsen.
    1. Peiris JS, Lai ST, Poon LL, Guan Y, Yam LY, Lim W, et al. Coronavirus as a possible cause of severe acute respiratory syndrome. Lancet. 2003;361:1319–25. 10.1016/S0140-6736(03)13077-2 - DOI - PMC - PubMed
    1. Ksiazek TG, Erdman D, Goldsmith CS, Zaki SR, Peret T, Emery S, et al. A novel coronavirus associated with severe acute respiratory syndrome. N Engl J Med. 2003;348:1953–66. 10.1056/NEJMoa030781 - DOI - PubMed

Publication types

MeSH terms

LinkOut - more resources

-