Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2004 Dec 1;173(11):6949-54.
doi: 10.4049/jimmunol.173.11.6949.

Interaction of soluble form of recombinant extracellular TLR4 domain with MD-2 enables lipopolysaccharide binding and attenuates TLR4-mediated signaling

Affiliations
Comparative Study

Interaction of soluble form of recombinant extracellular TLR4 domain with MD-2 enables lipopolysaccharide binding and attenuates TLR4-mediated signaling

Naoki Hyakushima et al. J Immunol. .

Abstract

TLRs have been implicated in recognition of pathogen-associated molecular patterns. TLR4 is a signaling receptor for LPS, but requires MD-2 to respond efficiently to LPS. The purposes of this study were to examine the interactions of the extracellular TLR4 domain with MD-2 and LPS. We generated soluble forms of rTLR4 (sTLR4) and TLR2 (sTLR2) lacking the putative intracellular and transmembrane domains. sTLR4 consisted of Glu(24)-Lys(631). MD-2 bound to sTLR4, but not to sTLR2 or soluble CD14. BIAcore analysis demonstrated the direct binding of sTLR4 to MD-2 with a dissociation constant of K(D) = 6.29 x 10(-8) M. LPS-conjugated beads precipitated MD-2, but not sTLR4. However, LPS beads coprecipitated sTLR4 and MD-2 when both proteins were coincubated. The addition of sTLR4 to the medium containing the MD-2 protein significantly attenuated LPS-induced NF-kappaB activation and IL-8 secretion in wild-type TLR4-expressing cells. These results indicate that the extracellular TLR4 domain-MD-2 complex is capable of binding LPS, and that the extracellular TLR4 domain consisting of Glu(24)-Lys(631) enables MD-2 binding and LPS recognition to TLR4. In addition, the use of sTLR4 may lead to a new therapeutic strategy for dampening endotoxin-induced inflammation.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources

-