Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2005 Jan;11(1):48-56.
doi: 10.1016/j.ymthe.2004.09.017.

Replacing acid alpha-glucosidase in Pompe disease: recombinant and transgenic enzymes are equipotent, but neither completely clears glycogen from type II muscle fibers

Affiliations
Free article

Replacing acid alpha-glucosidase in Pompe disease: recombinant and transgenic enzymes are equipotent, but neither completely clears glycogen from type II muscle fibers

Nina Raben et al. Mol Ther. 2005 Jan.
Free article

Abstract

Pompe disease (type II glycogen storage disease) is an autosomal recessive disorder caused by a deficiency of lysosomal acid alpha-glucosidase (GAA) leading to the accumulation of glycogen in the lysosomes primarily in cardiac and skeletal muscle. The recombinant human GAA (rhGAA) is currently in clinical trials for enzyme replacement therapy of Pompe disease. Both clinical data and the results of preclinical studies in our knockout model of this disease show that rhGAA is much more effective in resolving the cardiomyopathy than the skeletal muscle myopathy. By contrast, another form of human GAA--transgenic enzyme constitutively produced in liver and secreted into the bloodstream of knockout mice (Gaa-/-)--completely prevented both cardiac and skeletal muscle glycogen accumulation. In the experiments reported here, the transgenic enzyme was much less efficient when delivered to skeletal muscle after significant amounts of glycogen had already accumulated. Furthermore, the transgenic enzyme and the rhGAA have similar therapeutic effects, and both efficiently clear glycogen from cardiac muscle and type I muscle fibers, but not type II fibers. Low abundance of proteins involved in endocytosis and trafficking of lysosomal enzymes combined with increased autophagy in type II fibers may explain the resistance to therapy.

PubMed Disclaimer

Similar articles

Cited by

MeSH terms

LinkOut - more resources

-