Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2005 Mar;21(6):1469-77.
doi: 10.1111/j.1460-9568.2005.03978.x.

Regulation of miRNA expression during neural cell specification

Affiliations
Comparative Study

Regulation of miRNA expression during neural cell specification

Lena Smirnova et al. Eur J Neurosci. 2005 Mar.

Abstract

MicroRNA (miRNA) are a newly recognized class of small, noncoding RNA molecules that participate in the developmental control of gene expression. We have studied the regulation of a set of highly expressed neural miRNA during mouse brain development. Temporal control is a characteristic of miRNA regulation in C. elegans and Drosophila, and is also prominent in the embryonic brain. We observed significant differences in the onset and magnitude of induction for individual miRNAs. Comparing expression in cultures of embryonic neurons and astrocytes we found marked lineage specificity for each of the miRNA in our study. Two of the most highly expressed miRNA in adult brain were preferentially expressed in neurons (mir-124, mir-128). In contrast, mir-23, a miRNA previously implicated in neural specification, was restricted to astrocytes. mir-26 and mir-29 were more strongly expressed in astrocytes than neurons, others were more evenly distributed (mir-9, mir-125). Lineage specificity was further explored using reporter constructs for two miRNA of particular interest (mir-125 and mir-128). miRNA-mediated suppression of both reporters was observed after transfection of the reporters into neurons but not astrocytes. miRNA were strongly induced during neural differentiation of embryonic stem cells, suggesting the validity of the stem cell model for studying miRNA regulation in neural development.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources

-