Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2005 Dec 15;175(12):8218-25.
doi: 10.4049/jimmunol.175.12.8218.

Cytomegalovirus-specific CD4+ T cells in healthy carriers are continuously driven to replicative exhaustion

Affiliations

Cytomegalovirus-specific CD4+ T cells in healthy carriers are continuously driven to replicative exhaustion

Jean M Fletcher et al. J Immunol. .

Abstract

Repeated antigenic encounter drives proliferation and differentiation of memory T cell pools. An important question is whether certain specific T cells may be driven eventually to exhaustion in elderly individuals since the human life expectancy is increasing. We found that CMV-specific CD4+ T cells were significantly expanded in healthy young and old carriers compared with purified protein derivative-, varicella zoster virus-, EBV-, and HSV-specific populations. These CMV-specific CD4+ T cells exhibited a late differentiated phenotype since they were largely CD27 and CD28 negative and had shorter telomeres. Interestingly, in elderly CMV-seropositive subjects, CD4+ T cells of different specificities were significantly more differentiated than the same cells in CMV-seronegative individuals. This suggested the involvement of bystander-secreted, differentiation-inducing factors during CMV infection. One candidate was IFN-alpha, which induced loss of costimulatory receptors and inhibited telomerase in activated CD4+ T cells and was secreted at high levels by CMV-stimulated plasmacytoid dendritic cells (PDC). The CMV-specific CD4+ T cells in elderly subjects had severely restricted replicative capacity. This is the first description of a human memory T cell population that is susceptible to being lost through end-stage differentiation due to the combined effects of lifelong virus reactivation in the presence of bystander differentiation-inducing factors.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources

-