Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1992 Mar;98(3):955-61.
doi: 10.1104/pp.98.3.955.

Identification and kinetics of accumulation of proteins induced by ethylene in bean abscission zones

Affiliations

Identification and kinetics of accumulation of proteins induced by ethylene in bean abscission zones

E Del Campillo et al. Plant Physiol. 1992 Mar.

Abstract

A two-dimensional gel electrophoresis system that combines a cationic polyacrylamide gel electrophoresis at pH near neutrality with sodium dodecyl sulfate-polyacrylamide gel electrophoresis was used to analyze the spectrum of basic polypeptides that accumulate in bean (Phaseolus vulgaris) abscission zones after treatment with ethylene. Results showed that, as abscission progressed, at least seven basic proteins accumulated in the abscission zone prior to the accumulation of 9.5 cellulase. Six of the seven proteins correspond to pathogenesis-related (PR) proteins. Among them, two isoforms of beta-1,3-glucanase and multiple isoforms of chitinase were identified. A 22 kilodalton polypeptide that accumulated to high levels was identified as a thaumatin-like protein by analysis of its N-terminal sequence (up to 20 amino acids) and its serological relationship with heterologous thaumatin antibodies. A 15 kilodalton polypeptide serologically related to PR P1 (p14) from tomato was identified as bean PR P1 (p14)-like protein. The kinetics of accumulation of glucanases, chitinases, thaumatin-like and PR P1 (p14)-like proteins during ethylene treatment were similar and they showed that PR proteins accumulated in abscission zones prior to the increase in 9.5 cellulase. Addition of indoleacetic acid, a potent inhibitor of abscission, reduced the accumulation of these proteins to a similar extent (60%). The synchronized accumulation of this set of PR proteins, early in the abscission process, may play a role in induced resistance to possible fungal attack after a plant part is shed. The seventh protein does not correspond to any previously characterized PR protein. This new 45 kilodalton polypeptide accumulated in abscission zones on exposure to ethylene concomitantly with the increase in 9.5 cellulase. Its N-terminal sequence (up to 15 amino acids) showed some homology with the amino terminal sequence of chitinase. Polyclonal antibodies against chitinase recognized the 45 kilodalton polypeptide, but polyclonal antibodies against the 45 kilodalton protein recognized chitinase weakly. When abscission was inhibited by addition of indoleacetic acid, the accumulation of the 45 kilodalton protein was strongly inhibited (80%). This result suggests that the 45 kilodalton polypeptide may play a more direct role in abscission.

PubMed Disclaimer

Similar articles

Cited by

References

    1. Plant Mol Biol. 1990 Mar;14(3):357-68 - PubMed
    1. Proc Natl Acad Sci U S A. 1986 Sep;83(18):6820-4 - PubMed
    1. Nature. 1970 Aug 15;227(5259):680-5 - PubMed
    1. Plant Physiol. 1970 Apr;45(4):395-400 - PubMed
    1. Plant Mol Biol. 1991 Jan;16(1):81-94 - PubMed

LinkOut - more resources

-