Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2006 May;101(1):85-90.
doi: 10.1254/jphs.fp0050863. Epub 2006 May 9.

The mechanism of endothelium-independent relaxation induced by the wine polyphenol resveratrol in human internal mammary artery

Affiliations
Free article

The mechanism of endothelium-independent relaxation induced by the wine polyphenol resveratrol in human internal mammary artery

Aleksandra Novakovic et al. J Pharmacol Sci. 2006 May.
Free article

Abstract

Resveratrol, a stilbene polyphenol found in grapes and red wine, produces vasorelaxation in both endothelium-dependent and endothelium-independent manners. The mechanisms by which resveratrol causes vasodilatation are uncertain. The aim of this study was to investigate the mechanism(s) of endothelium-independent resveratrol-induced vasorelaxation in human internal mammary artery (HIMA) obtained from male patients undergoing coronary artery bypass surgery and to clarify the contribution of different K+ channel subtypes in resveratrol action in this blood vessel. HIMA rings without endothelium were precontracted with phenylephrine. Resveratrol induced a concentration-dependent relaxation of the HIMA. A highly selective blocker of ATP-sensitive K+ channels, glibenclamide, as well as nonselective blockers of Ca2+-sensitive K+ channels, tetraethylammonium and charybdotoxin, did not block resveratrol induced relaxation of HIMA rings. 4-Aminopyridine (4-AP), non selective blocker of voltage gated K+ (KV) channels, and margatoxin that inhibits KV1.2, KV1.3, and KV1.6 channels abolished relaxation of HIMA rings induced by resveratrol. In conclusion, we have shown that resveratrol potently relaxed HIMA rings with denuded endothelium. It seems that 4-AP- and margatoxin-sensitive K+ channels located in smooth muscle of HIMA mediated this relaxation.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

-